Skip to main content

Static and Dynamic Analyses of Circular Cellular Plates

  • Chapter
  • First Online:
Simplified Analytical Methods of Elastic Plates
  • 394 Accesses

Abstract

This chapter presents the analytical methodology for the static and dynamic problems of circular cellular plates with voids of large size in bending state subjected to vertical loads. The discontinuous variation in the rigidity and mass of the plates due to the voids is also expressed as a continuous function by means of the extended Dirac function. First, the general governing equations for circular cellular plates are proposed by converting from the rectangular cellular plates stated in Chap. 6 to circular ones. Second, the analytical methodologies for the static and dynamic problems are presented by means of the Galerkin method. Third, for practical use, the approximate solutions for the static and dynamic problems are proposed in closed-form solution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Takabatake, H., Kajiwara, K., Takesako, R.: A simplified analysis of circular cellular plates. Comput. Struct. 61(5), 789–804 (1996)

    Article  Google Scholar 

  2. Takabatake, H., Morimoto, H., Fujiwara, T., Honma, T.: Simplified analysis of circular plates including voids. Comput. Struct. 58(2), 263–275 (1996)

    Article  Google Scholar 

  3. Szilard, R.: Theory and Analysis of Plates-Classical and Numerical Methods. Prentice-Hall, Englewood Cliffs, New Jersey (1974)

    MATH  Google Scholar 

  4. Takabatake, H.: Static analyses of elastic plates with voids. Int. J. Solids Struct. 28(2), 179–196 (1991)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideo Takabatake .

Appendices

Appendix 1: Translational Formulations

The coefficients and rotational angles are translated as follows:

$$ \begin{aligned} & w_{,x} = w_{,r} ;\quad w_{,xx} = w_{,rr} ; \\ & w_{,y} = \frac{1}{r}w_{,\phi } ;\quad w_{,yy} = \frac{1}{r}w_{,r} + \frac{1}{{r^{2} }}w_{,\phi \phi } ;\quad w_{,xy} = \frac{1}{r}w_{,r\phi } - \frac{1}{{r^{2} }}w_{,\phi }\,; \cdots \\ \end{aligned} $$
(7.73)
$$ \begin{aligned} & \theta_{x} = \theta_{r} ;\quad \theta_{y} = \frac{1}{r}\theta_{\phi } ;\quad \theta_{x,x} = \theta_{r,r} ;\quad \theta_{x,y} = \frac{1}{r}\theta_{r,\phi } - \frac{1}{{r^{2} }}\theta_{\phi } ;\;\quad \theta_{x,xx} = \theta_{r,rr} ; \\ & \theta_{x,xy} = \frac{1}{r}\theta_{r,r\phi } - \frac{1}{r}\left( {\frac{1}{r}\theta_{\phi } } \right)_{,r} - \frac{1}{{r^{2} }}\theta_{r,\phi } + \frac{1}{{r^{3} }}\theta_{\phi } ;\quad \theta_{x,xxx} = \theta_{r,rrr} ; \\ & \theta_{y,x} = \left( {\frac{1}{r}\theta_{\phi } } \right);\quad \theta_{y,y} = \frac{1}{r}\theta_{r} + \frac{1}{{r^{2} }}\theta_{\phi ,\phi } ; \\ & \theta_{y,yy} = \frac{1}{r}\left( {\frac{1}{r}\theta_{\phi } } \right)_{,r} + \frac{2}{{r^{2} }}\theta_{r,\phi } + \frac{1}{{r^{3} }}\theta_{\phi ,\phi \phi } - \frac{1}{{r^{3} }}\theta_{\phi } ; \\ & \theta_{y,xy} = \frac{1}{r}\left[ {\theta_{r,r} + \left( {\frac{1}{r}\theta_{\phi } } \right)_{,r\phi } } \right] - \frac{1}{{r^{2} }}\left( {\theta_{r} + \frac{1}{r}\theta_{\phi ,\phi } } \right); \\ & \theta_{x,yy} = \frac{1}{r}\theta_{r,r} + \frac{1}{{r^{2} }}\theta_{r,\phi \phi } - \frac{1}{{r^{2} }}\theta_{r} - \frac{2}{{r^{3} }}\theta_{\phi ,\phi } ;\quad \theta_{y,xx} = \left( {\frac{1}{r}\theta_{\phi } } \right)_{,rr}; \cdots \\ \end{aligned} $$
(7.74)

Appendix 2: Coefficients and Load Terms

The coefficients in Eqs. (7.36)–(7.38) are defined as

$$ \begin{aligned} A_{{1mn\bar{m}\bar{n}}} & = \int\limits_{0}^{2\pi } {\int\limits_{0}^{{r_{0} }} {\left[ {Gh_{0} \kappa_{r} \alpha_{Gr,r} f_{{\bar{m}\bar{n},r}} + } \right.} } Gh_{0} \kappa_{r} \alpha_{Gr} f_{{\bar{m}\bar{n},rr}} \\ & \quad + Gh_{0} \kappa_{\phi } \alpha_{G\phi ,\phi } \frac{1}{{r^{2} }}f_{{\bar{m}\bar{n},\phi }} + \left. {Gh_{0} \kappa_{\phi } \alpha_{G\phi } \left( {\frac{1}{r}f_{{\bar{m}\bar{n},r}} + \frac{1}{{r^{2} }}f_{{\bar{m}\bar{n},\phi \phi }} } \right)} \right]f_{mn} \,\text{d}rr\,\text{d}\phi \\ \end{aligned} $$
(7.75)
$$ \begin{aligned} A_{{2mn\bar{m}\bar{n}}} & = \int\limits_{0}^{2\pi } {\int\limits_{0}^{{r_{0} }} {\bigg( {Gh_{0} \kappa_{r} \alpha_{Gr,r} g_{{r\bar{m}\bar{n}}} + Gh_{0} \kappa_{r} \alpha_{Gr} g_{{r\bar{m}\bar{n},r}} } } } \\ & \quad + { Gh_{0} \kappa_{\phi } \alpha_{G\phi } \frac{1}{r}g_{{r\bar{m}\bar{n}}} } \bigg)f_{mn} \,\text{d}rr\,\text{d}\phi \\ \end{aligned} $$
(7.76)
$$ A_{{3mn\bar{m}\bar{n}}} = \int\limits_{0}^{2\pi } {\int\limits_{0}^{{r_{0} }} {\left( {Gh_{0} \kappa_{\phi } \alpha_{G\phi ,\phi } \frac{1}{{r^{2} }}g_{{\phi \, \bar{m}\bar{n}}} + Gh_{0} \kappa_{\phi } \alpha_{G\phi } \frac{1}{{r^{2} }}g_{{\phi \, \bar{m}\bar{n},\phi }} } \right)} } f_{mn} \,\text{d}rr\,\text{d}\phi $$
(7.77)
$$ B_{{1mn\bar{m}\bar{n}}} = - \int\limits_{0}^{2\pi } {\int\limits_{0}^{{r_{0} }} {Gh_{0} \kappa_{r} \alpha_{Gr} f_{{\bar{m}\bar{n},r}} g_{rmn} \,\text{d}rr\,\text{d}\phi ,} } $$
(7.78)
$$ \begin{aligned} B_{{2mn\bar{m}\bar{n}}} & = \int\limits_{0}^{2\pi } {\int\limits_{0}^{{r_{0} }} {\left\{ {D_{0} \text{d}_{,r} g_{{r\bar{m}\bar{n},r}} + D_{0} \text{d}_{,r} \nu\frac{1}{r}g_{{r\bar{m}\bar{n}}} } \right.} } \\ & \quad + D_{0} \text{d}\left[ {g_{{r\bar{m}\bar{n},rr}} + \nu\,\left( {\frac{1}{r}g_{{r\bar{m}\bar{n},r}} - \frac{1}{{r^{2} }}g_{{r\bar{m}\bar{n}}} } \right)} \right] \\ &\quad+\, \frac{{\left( {1 - \nu} \right)}}{2}D_{0} \text{d}_{,\phi } \frac{1}{{r^{2} }}g_{{r\bar{m}\bar{n},\phi }} + \frac{{\left( {1 - \nu} \right)}}{2}D_{0} \text{d} \\ & \left.\quad \times \left( {\frac{2}{r}g_{{r\bar{m}\bar{n},r}} + \frac{1}{{r^{2} }}g_{{r\bar{m}\bar{n},\phi \phi }} - \frac{2}{{r^{2} }}g_{{r\bar{m}\bar{n}}} } \right) - {Gh_{0} \kappa_{r} \alpha_{Gr} g_{{r\bar{m}\bar{n}}} } \right\}g_{rmn} \,\text{d}rr\,\text{d}\phi \\ \end{aligned} $$
(7.79)
$$ \begin{aligned}B_{{3mn\bar{m}\bar{n}}} &= \int\limits_{0}^{2\pi } {\int\limits_{0}^{{r_{0} }} {\left[ {D_{0} \text{d}_{,r} \nu\frac{1}{{r^{2} }}g_{{r\bar{m}\bar{n},\phi }} + D_{0} \,\text{d}\nu} \right.} } \left( { - \frac{2}{{r^{3} }}g_{{\phi \bar{m}\bar{n},\phi }} + \frac{1}{{r^{2} }}g_{{\phi \bar{m}\bar{n},r\phi }} } \right) \\ &\quad + \frac{(1 - \nu)}{2}D_{0} \text{d}_{,\phi } \left( { - \frac{2}{{r^{3} }}g_{{\phi \bar{m}\bar{n}}} + \frac{1}{{r^{2} }}g_{{\phi \bar{m}\bar{n},r}} } \right) \\&\left. \quad + \frac{(1 - \nu)}{2}D_{0} \text{d}\left( {\frac{1}{{r^{2} }}g_{{\phi \bar{m}\bar{n},r\phi }} - \frac{4}{{r^{3} }}g_{{\phi \bar{m}\bar{n},\phi }} } \right) \right]g_{rmn} \,\text{d}rr\,\text{d}\phi \\ \end{aligned} $$
(7.80)
$$ C_{{1mn\bar{m}\bar{n}}} = - \int\limits_{0}^{2\pi } {\int\limits_{0}^{{r_{0} }} {Gh_{0} \kappa_{\phi } \alpha_{G\phi } \frac{1}{r}f_{{\bar{m}\bar{n},\phi }} g_{\phi mn}\,\text{d}rr\,\text{d}\phi } } $$
(7.81)
$$ \begin{aligned} C_{{2mn\bar{m}\bar{n}}} & = \int\limits_{0}^{2\pi } {\int\limits_{0}^{{r_{0} }} {\left\{ {D_{0} \text{d}_{,\phi } \left( {\frac{1}{{r^{2} }}g_{{r\bar{m}\bar{n}}} + \nu\frac{1}{r}g_{{r\bar{m}\bar{n},r}} } \right)} \right.} } \\ & \quad + D_{0} \text{d}\left[ {\frac{2}{{r^{2} }}g_{{r\bar{m}\bar{n},\phi }} + \nu\left( {\frac{1}{r}g_{{r\bar{m}\bar{n},r\phi }} - \frac{1}{{r^{2} }}g_{{r\bar{m}\bar{n},\phi }} } \right)} \right] + \frac{(1 - \nu)}{2}D_{0} \text{d}_{,r} \frac{1}{r}g_{{r\bar{m}\bar{n},\phi }} \\ & \quad \left. { + \frac{(1 - \nu)}{2}D_{0} \text{d} \times \left( {\frac{1}{r}g_{{r\bar{m}\bar{n},r\phi }} - \frac{1}{{r^{2} }}g_{{r\bar{m}\bar{n},\phi }} } \right)} \right\}g_{\phi mn}\,\text{d}rr\,\text{d}\phi , \\ \end{aligned} $$
(7.82)
$$ \begin{aligned} C_{{3mn\bar{m}\bar{n}}} & = \int\limits_{0}^{2\pi } {\int\limits_{0}^{{r_{0} }} {\left\{ {D_{0} \text{d}_{,\phi } \frac{1}{{r^{3} }}g_{{\phi \, \bar{m}\bar{n},\phi }} } \right.} } + D_{0} \text{d}\left[ - \frac{2}{{r^{3} }}g_{{\phi \, \bar{m}\bar{n}}} + \frac{1}{{r^{2} }}g_{{\phi \, \bar{m}\bar{n},r}} \right. \\ &\left. \quad+\, \frac{1}{{r^{3} }}g_{{\phi \, \bar{m}\bar{n},\phi \phi }} + \nu\left( {\frac{2}{{r^{3} }}g_{{\phi \, \bar{m}\bar{n}}} - \frac{1}{{r^{2} }}g_{{\phi \, \bar{m}\bar{n},r}} } \right) \right] \\ & \quad + \frac{(1 - \nu)}{2}D_{0} \text{d}_{,r} \left( { - \frac{2}{{r^{2} }}g_{{\phi \, \bar{m}\bar{n}}} + \frac{1}{r}g_{{\phi \, \bar{m}\bar{n},r}} } \right) \\ & \quad + \frac{(1 - \nu)}{2}D_{0} \text{d}\left( {\frac{4}{{r^{3} }}g_{{\phi \, \bar{m}\bar{n}}} - \frac{3}{{r^{2} }}g_{{\phi \, \bar{m}\bar{n},r}} + \frac{1}{r}g_{{\phi \, \bar{m}\bar{n},rr}} } \right) \\ & \quad \left. { - Gh_{0} \kappa_{\phi } \alpha_{G\phi } \frac{1}{r}g_{{\phi \, \bar{m}\bar{n}}} } \right\}g_{\phi \, mn} \,\text{d}rr\,\text{d}\phi \\ \end{aligned} $$
(7.83)

And the terms of external loads in Eq. (7.36) are

$$ P_{mn} = - \int\limits_{0}^{2\pi } {\int\limits_{0}^{{r_{0} }} {p\,f_{mn}\, \text{d}rr\,\text{d}\phi } } $$
(7.84)

They may be calculated easily by the method shown in Appendix 3.

Appendix 3: Calculation Including the Extend Dirac Function \( D(r - r_{i} ) \)

The integral calculation including the extended Dirac function \( D(r - r_{i} ) \) can be written as [4]

$$ \int\limits_{0}^{{r_{0} }} {D(r - r_{i} )} \,f(r)\,\text{d}r = \int\limits_{{r_{i} - (b_{ri,j} /2)}}^{{r_{i} + (b_{ri,j} /2)}} {f(\xi )} \,\text{d}\xi $$
(7.85)

in which \( \xi \) is a supplementary variable of r. The n-th derivatives of the extended Dirac functions can therefore be expressed as

$$ \int\limits_{0}^{{r_{0} }} {D^{(n)} (r - r_{i} )} \,f(r)\,\text{d}r = \int\limits_{{r_{i} - (b_{ri,j} /2)}}^{{r_{i} + (b_{ri,j} /2)}} {( - 1)^{n} f^{(n)} (\xi )} \,\text{d}\xi $$
(7.86)

in which the superscripts enclosed within parentheses indicate the differential order. For calculations including the extended Dirac function \( D(\phi - \phi_{j} ) \), similar expressions may be obtained.

When the conditions \( b_{ri,\,j} \ll r_{0} \) and \( b_{\phi \,i,\,j} \ll { 2}\pi \, r \) are satisfied, the specific functions \( D(r - r_{i} ) \) and \( D(\phi - \phi_{j} ) \) are approximately related to the Dirac delta functions, \( \delta \left( {r - r_{i} } \right) \) and \( \delta \left( {\phi - \phi_{j} } \right) \), by

$$ D(r - r_{i} ) \approx b_{ri,j\,} \delta (r - r_{i} ) $$
(7.87)
$$ D\,(\phi - \phi_{j} ) \approx b_{\phi i,j\,} \delta (\phi - \phi_{j} ) $$
(7.88)

Appendix 4: The Governing Equations for Solid Plates Without Voids Based on Mindlin-Reissner Hypothesis

In Sect. 7.2, we had stated that the governing equations of circular cellular plates based on Mindlin-Reissner hypothesis may easily transform into rectangular solid (normal) plates without voids based on the same Mindlin-Reissner hypothesis by changing \( \alpha_{h\,} \) and d to 1 and \( \kappa_{x} G_{x} \) and \( \kappa_{y} G_{y} \) to \( \kappa G \). We introduce the governing equations of circular solid plates based on Mindlin-Reissner hypothesis for practical use. From Eqs. (7.4) to (7.9), we have

$$ \begin{aligned} & \delta w:\quad m_{0} \alpha_{m} \ddot{w} - [\kappa Gh_{0} (w_{,r} + \theta_{r} )]_{,r} - (\kappa Gh_{0} )_{,\phi } \left( {\frac{1}{{r^{2} }}w_{,\phi } + \frac{1}{{r^{2} }}\theta_{\phi } } \right) \\ & \quad - \kappa Gh_{0} \left( {\frac{1}{r}w_{,r} + \frac{1}{{r^{2} }}w_{,\phi \phi } + \frac{1}{r}\theta_{r} + \frac{1}{{r^{2} }}\theta_{\phi ,\phi } } \right) - p + c\dot{w} = 0 \\ \end{aligned} $$
(7.89)
$$ \begin{aligned} & \delta \theta_{r} :\quad I_{p} \,\ddot{\theta }_{r} + \kappa Gh_{0} (w_{,r} + \theta_{r} ) - D_{0} \left[ {\theta_{r,rr} + \nu\left( {\frac{1}{r}\theta_{r,r} - \frac{2}{{r^{3} }}\theta_{\phi ,\phi } + \frac{1}{{r^{2} }}\theta_{\phi ,r\phi } - \frac{1}{{r^{2} }}\theta_{r} } \right)} \right] \\ & \quad - \frac{(1 - \nu)}{2}D_{0} \left( {\frac{2}{r}\theta_{r,r} + \frac{1}{{r^{2} }}\theta_{r,\phi \phi } + \frac{1}{{r^{2} }}\theta_{\phi ,r\phi } - \frac{1}{{r^{2} }}\theta_{r} - \frac{4}{{r^{3} }}\theta_{\phi ,\phi } } \right) = 0 \\ \end{aligned} $$
(7.90)
$$ \begin{aligned} & \delta \theta_{\phi } :\quad \frac{1}{r}I_{p} \,\ddot{\theta }_{\phi } + \kappa Gh_{0} \left( {\frac{1}{r}w_{,\phi } + \frac{1}{r}\theta_{\phi } } \right) \\ & \quad - D_{0} \left[ - \frac{2}{{r^{3} }}\theta_{\phi } + \frac{1}{{r^{2} }}\theta_{\phi ,r} + \frac{2}{{r^{2} }}\theta_{r,\phi } + \frac{1}{{r^{3} }}\theta_{\phi ,\phi \phi } \right.\\ &\left.\quad+\, \nu\left( {\frac{1}{r}\theta_{r,r\phi } + \frac{2}{{r^{3} }}\theta_{\phi } - \frac{1}{{r^{2} }}\theta_{\phi ,r} - \frac{1}{{r^{2} }}\theta_{r,\phi } } \right) \right] \\ & \quad - \frac{(1 - \nu)}{2}D_{0} \left( {\frac{1}{r}\theta_{r,r\phi } + \frac{4}{{r^{3} }}\theta_{\phi } - \frac{3}{{r^{2} }}\theta_{\phi ,r} - \frac{1}{{r^{2} }}\theta_{r,\phi } + \frac{1}{r}\theta_{\phi ,rr} } \right) = 0 \\ \end{aligned} $$
(7.91)
$$ w = w^{*} \quad \text{or}\quad \kappa Gh_{0} (w_{,r} + \theta_{r} ) = v_{r}^{*} $$
(7.92)
$$ \theta_{r} = \theta_{r}^{*} \quad \text{or}\quad D_{0} \left[ {\theta_{r,r} + \nu\left( {\frac{1}{r}\theta_{r} + \frac{1}{{r^{2} }}\theta_{\phi ,\phi } } \right)} \right] = m_{r}^{*} $$
(7.93)
$$ \theta_{\phi } = \theta_{\phi }^{*} \quad \text{or}\quad \frac{1 - \nu}{2}D_{0} \left( {\frac{1}{r}\theta_{r,\phi } - \frac{2}{{r^{2} }}\theta_{\phi } + \frac{1}{r}\theta_{\phi ,r} } \right) = m_{r\phi }^{*} $$
(7.94)

at \( r = r_{0} \), in which p are lateral loads; \( w^{*} \), \( \theta_{r}^{*} \), and \( \theta_{\phi }^{*} \) are prescribed on the geometrical boundary conditions; and \( v_{r}^{*} \), \( m_{r}^{*} \), and \( m_{r\phi }^{*} \) are prescribed on the mechanical boundary conditions at \( r = r_{0} \).

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Takabatake, H. (2019). Static and Dynamic Analyses of Circular Cellular Plates. In: Simplified Analytical Methods of Elastic Plates. Springer, Singapore. https://doi.org/10.1007/978-981-13-0086-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-0086-8_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-0085-1

  • Online ISBN: 978-981-13-0086-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics