Skip to main content

Static and Dynamic Analyses of Rectangular Floating Plates Subjected to Moving Loads

  • Chapter
  • First Online:
  • 410 Accesses

Abstract

This chapter presents a general and simple analytical methodology for the static and dynamic problems of a rectangular floating plate, such as an international airport, in which the floating plate has an arbitrarily variable structural stiffness and locates on the elastic foundation with variable spring stiffness. The discontinuous variation in the rigidity and mass of the plates due to the voids is also expressed as a continuous function by means of the extended Dirac function. The effect of the variation of the moving mass due to a jumbo jet taking off and landing on the very large floating plate is considered. The closed-form approximate solutions for free and forced vibrations are also considered to be powerful in the preliminary design stage.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Watanabe, E., Utsunomiya, T., Wang, C.M.: Hydroelastic analysis of pontoon-type VLFS: a literature survey. Eng. Struct. 26(2), 245–256 (2004)

    Article  Google Scholar 

  2. Filonenko-Borodich, M.M.: Some approximate theories of the elastic foundation. Uchenyie Zapiski Moskovskogo Gosudarstvennogo Universiteta 46, 3–18 (1940)

    Google Scholar 

  3. Filonenko-Borodich, M.M.: A very simple model of an elastic foundation capable of spreading the load. Sbornik Moskovkovo Elektro Instituta Transzheldorizdat 53 (1945)

    Google Scholar 

  4. Hetényi, M.: Beams on Elastic Foundation: Theory with Applications in the Fields of Civil and Mechanical Engineering, University of Michigan Press, Ann Arbor (1946)

    Google Scholar 

  5. Pasternak, P.L.: On a New Method of Analysis of an Elastic Foundation by Means of Two Foundation Constants. Gosudarstvennoe Izdatelstvo Literaturi po Stroitelstvu i Arkhitekture, Moscow (1954)

    Google Scholar 

  6. Kerr, A.D.: Elastic and viscoelastic foundation models. J. Appl. Mech. 31(3), 491–498 (1964)

    Article  Google Scholar 

  7. Reissner, E.: Deflection of plates on viscoelastic foundation. J. Appl. Mech. 80, 144–145 (1958)

    MATH  Google Scholar 

  8. Vlasov, V. Z., Leont’ev, N. N.: Beams, Plates and Shells on Elastic Foundations. Israel Program for Scientific Translations, Jerusalem (1966)

    Google Scholar 

  9. Selvadurai, A.P.S.: Elastic analysis of soil-foundation interaction. Geotech. Eng. 17 (1979)

    Google Scholar 

  10. Frýba, L.: Vibration of Solids and Structures Under Moving Loads. Thomas Telford, London (1999)

    Google Scholar 

  11. Rofooei, F.R., Nikkhoo, A.: Application of active piezoelectric patches in controlling the dynamic response of a thin rectangular plate under a moving mass. Int. J. Solids Struct. 46(11–12), 2429–2443 (2009)

    Article  Google Scholar 

  12. Zhao, C., Zhang, J., Huang, W.: Vibration reduction of floating elastic plates in water waves. Mar. Struct. 20(1–2), 71–99 (2007)

    Google Scholar 

  13. Sturova, I.V.: The effect of periodic surface pressure on a rectangular elastic plate floating on shallow water. J. Appl. Math. Mech. 70(3), 378–386 (2006)

    Article  MathSciNet  Google Scholar 

  14. Sturova, I.V.: Effect of bottom topography on the unsteady behaviour of an elastic plate floating on shallow water. J Appl. Math. Mech. 72(4), 417–426 (2008)

    Article  MathSciNet  Google Scholar 

  15. Tkacheva, L.A.: The diffraction of surface waves by a floating elastic plate at oblique incidence. J. Appl. Math. Mech. 68(3), 425–436 (2004)

    Article  MathSciNet  Google Scholar 

  16. Sturova, I.V.: Unsteady behaviour of a heterogeneous elastic beam floating on shallow water. J. App. Math. Mech. 72(6), 704–714 (2008)

    Article  MathSciNet  Google Scholar 

  17. Takabatake, H.: A simplified analysis of rectangular floating plates subjected to moving loads. Ocean Eng. 97, 37–47 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideo Takabatake .

Appendix: Shape Function of Beam on Elastic Foundation, Supported with Translational and Rotational Stiffnesses

Appendix: Shape Function of Beam on Elastic Foundation, Supported with Translational and Rotational Stiffnesses

In the theory the shape function of the current rectangular floating plates is substituted with one of a uniform beam on the Winkler-type elastic foundation. So, we present the dynamic problem of uniform beams on a uniform elastic foundation supported with elastic translational stiffness and rotational stiffness at the both ends, as shown in Fig. 10.12.

Fig. 10.12
figure 12

Beam supported with translational stiffness and rotational stiffness on elastic foundations [17]

Where \( k_{c} \) is the translational stiffness of the elastic foundation, and \( k_{a} \), \( k_{b} \), \( R_{a} \), and \( R_{b} \) are the translational stiffnesses and rotational stiffnesses of the supports at both ends, respectively. \( \hat{m}_{0} \) is the mass per unit length of the uniform beam.

The equation of motion for the uniform beam may be given by

$$ \hat{m}_{{0{\kern 1pt} }} \ddot{w} + [EI\,w^{\prime\prime}]^{\prime\prime} = p \, (x,y) - k_{c} w $$
(10.67)

where EI is the bending stiffness of the uniform beam.

The equation for the transverse free vibration becomes from Eq. (10.67) as

$$ \hat{m}_{0} \ddot{w} + [EI\,w^{\prime\prime}]^{\prime\prime} + k_{c} w = 0 $$
(10.68)

The boundary conditions are also obtained as

Elastic support

$$ k_{a} w_{a} = - EI\,w^{\prime\prime\prime}\quad {\text{at}}\,x = \, 0 $$
(10.69)
$$ k_{b} w_{b} = EI\,w^{\prime\prime\prime}\quad {\text{at}}\,x = l $$
(10.70)

Elastic restraint

$$ R_{a} w^{\prime}_{a} = \, EI\,w^{\prime\prime}\quad {\text{at}}\,x = \, 0 $$
(10.71)
$$ R_{b} w^{\prime}_{b} = - EI\,w^{\prime\prime}\quad {\text{at}}\;x = l $$
(10.72)

The various boundary conditions can be made up easily by changing the coefficients of the translational stiffness and rotational stiffness. For example,

  • When \( k_{a} \to \infty \), the unmoving support condition is \( w_{a} = 0. \)

  • When \( k_{a} \to 0 \), the free support condition is \( EI \, w^{{\prime \prime}{\prime}} = 0. \)

  • When \( R_{a} \to \infty \), the constrained condition for rotation is \( w^{\prime}_{a} = 0. \)

  • When \( R_{a} \to 0 \), the free condition for rotation is \( EI\,{\kern 1pt} w^{\prime\prime} = 0. \)

Expressing the deflection \( w(x,t) \) in the form

$$ w(x, t) = \bar{w} ( {\text{x) }} {\text{e}}^{{i\upomega t}} $$
(10.73)

the frequency equation for the current beam may be expressed as

$$ \bar{w}^{{\prime \prime}{\prime \prime}}- k^{4} \bar{w} = 0 $$
(10.74)

in which \( k^{2} \) is defined as

$$ k^{2} = \sqrt {\frac{{\omega^{2} \hat{m}_{0} - \bar{k}_{c} }}{EI}} $$
(10.75)

The solution of Eq. (10.74) is given as

$$ \begin{aligned} \bar{w}(x) & = C_{1} \left[ {\cos (kx) + \cosh (kx)} \right] + C_{2} \left[ {\cos (kx) - \cosh (kx)} \right] \\ & \quad + C_{3} \left[ {\sin (kx) + \sinh (kx)} \right] + C_{4} \left[ {\sin (kx) - \sinh (kx)} \right] \\ \end{aligned} $$
(10.76)

in which \( C_{1} - C_{4} \) are arbitrary constants.

The boundary conditions (10.69)–(10.72) can be rewritten in the form

$$ \alpha_{a} \bar{k}_{a1} \bar{w}_{(0)} + \bar{k}_{a2} \bar{w}^{\prime\prime\prime}_{(0)} = 0;\quad \alpha_{b} \bar{k}_{b1} \bar{w}_{(l)} - \bar{k}_{b2} \bar{w}^{\prime\prime\prime}_{(l)} = 0 $$
(10.77)
$$ \beta_{a} \bar{R}_{a1} \bar{w}^{\prime}_{(0)} - \bar{R}_{a2} \bar{w}^{\prime\prime}_{(0)} = 0;\quad \beta_{b} \bar{R}_{b1} \bar{w}^{\prime}_{(l)} + \bar{R}_{b2} \bar{w}^{\prime\prime}_{(l)} = 0 $$
(10.78)

where \( \alpha_{a} \), \( \alpha_{b} \), \( \beta_{a} \), and \( \beta_{b} \) are defined to be

$$ \alpha_{a} = \frac{{k_{a} }}{EI};\quad \alpha_{b} = \frac{{k_{b} }}{EI} $$
(10.79)
$$ \beta_{a} = \frac{{R_{a} }}{EI};\quad \beta_{b} = \frac{{R_{b} }}{EI} $$
(10.80)

The constants \( \bar{k}_{a1} ,\bar{k}_{a2} ,{ \ldots } \), \( \bar{R}_{b1} \), and \( \bar{R}_{b2} \) are constants and take the value 1 for the general boundary condition including the translational stiffness and rotational stiffness. When the translation or rotation degree is constrained, the constants \( \bar{k}_{a1} \), \( \bar{k}_{b1} \), \( \bar{R}_{a1} \), and \( \bar{R}_{b1} \) takes 1, and \( \bar{k}_{a2} \), \( \bar{k}_{b2} \), \( \bar{R}_{a2} \), and \( \bar{R}_{b2} \) are 0.

Conversely, when the translational or rotational is free, the constants \( \bar{k}_{a1} { \ldots } \) and \( \bar{R}_{b1} \) take 0, and \( \bar{k}_{a2} ,{ \ldots } \) and \( \bar{R}_{b2} \) are 1. These constants are the general boundary conditions and include extreme (classic) boundary conditions such as perfectly constrained or free for translation and rotation. Substituting Eq. (10.76) into Eqs. (10.77) and (10.78) and using the condition that the determinant \( \left| {A_{ij} } \right| \) of the reduced equations is zero, the following algebraic equation for \( kl \) is obtained

$$ \left[ {\begin{array}{*{20}c} {A_{11} } & {A_{12} } & {A_{13} } & {A_{14} } \\ {A_{21} } & {A_{22} } & {A_{23} } & {A_{24} } \\ {A_{31} } & {A_{32} } & {A_{33} } & {A_{34} } \\ {A_{41} } & {A_{42} } & {A_{43} } & {A_{44} } \\ \end{array} } \right]\left[ {\begin{array}{*{20}c} {C_{1} } \\ {C_{2} } \\ {C_{3} } \\ {C_{4} } \\ \end{array} } \right] = \left[ {\begin{array}{*{20}c} 0 \\ 0 \\ 0 \\ 0 \\ \end{array} } \right] $$
(10.81)

where \( A_{11} \sim A_{44} \) are defined as

$$ \begin{aligned} & \left[ {\begin{array}{*{20}l} {A_{11} = \, 2\alpha_{a} \bar{k}_{a1} } \hfill \\ {A_{12} = \, 0 \, } \hfill \\ {A_{13} = 0 \, } \hfill \\ {A_{14} = \, - 2\bar{k}_{a2} \, (kl)^{3} } \hfill \\ \end{array} } \right. \\ & \left[ {\begin{array}{*{20}l} {A_{21} = \alpha_{b} \bar{k}_{b1} \, \left[ {\cos kl + \cosh kl} \right] - \, \bar{k}_{b2} \, (kl)^{3} \left[ { \, \sin kl + \sinh kl} \right]} \hfill \\ {A_{22} = \alpha_{b} \bar{k}_{b1} \, \left[ {\cos kl - \cosh kl} \right] - \, \bar{k}_{b2} \, (kl)^{3} \left[ { \, \sin kl - \sinh kl} \right]} \hfill \\ {A_{23} = \alpha_{b} \bar{k}_{b1} \, \left[ {\sin kl + \sinh kl} \right] - \, \bar{k}_{b2} \, (kl)^{3} \left[ { - \cos kl + \cosh kl} \right]} \hfill \\ {A_{24} = \alpha_{b} \bar{k}_{b1} \, \left[ {\sin kl - \sinh kl} \right] + \, \bar{k}_{b2} \, (kl)^{3} \left[ { \, \cos kl + \cosh kl} \right]} \hfill \\ \end{array} } \right. \\ & \left[ {\begin{array}{*{20}l} {A_{31} = \, 0 \, } \hfill \\ {A_{32} = \, 2\bar{R}_{a2} \, (kl)^{2} \, } \hfill \\ {A_{33} = 2\beta_{a} \bar{R}_{a1} (kl) \, } \hfill \\ {A_{34} = 0 \, } \hfill \\ \end{array} } \right. \\ & \left[ {\begin{array}{*{20}l} {A_{41} = \, \beta_{B} \bar{R}_{b1} (kl) \, \left[ { - \sin (kl) + \sinh (kl)} \right] + \, \bar{R}_{b2} \, (kl)^{2} \left[ { - \cos (kl) + \cosh (kl)} \right]} \hfill \\ {A_{42} = - \beta_{B} \bar{R}_{b1} (kl) \, \left[ { \, \sin (kl) + \sinh (kl)} \right] - \, \bar{R}_{b2} \, (kl)^{2} \left[ { \, \cos (kl) + \cosh (kl)} \right] \, } \hfill \\ {A_{43} = \, \beta_{B} \bar{R}_{b1} (kl) \, \left[ { \, \cos (kl) + \cosh (kl)} \right] + \, \bar{R}_{b2} \, (kl)^{2} \left[ { - \sin (kl) + \sinh (kl)} \right]} \hfill \\ {A_{44} = \, \beta_{B} \bar{R}_{b1} (kl) \, \left[ { \, \cos (kl) - \cosh (kl)} \right] - \, \bar{R}_{b2} \, (kl)^{2} \left[ { \, \sin (kl) + \sinh (kl)} \right] \, } \hfill \\ \end{array} } \right. \\ \end{aligned} $$
(10.82)

The constants \( k_{1} \sim k_{4} \) take the following values for the four cases:

for \( A_{11} \ne 0 \, \,{\text{and }}A_{32} \ne 0 \)

$$ k_{1} = - \frac{{A_{14} }}{{A_{11} }};\quad k_{2} = - \frac{{A_{33} }}{{A_{32} }}k_{3} ;\quad k_{3} = \frac{{A_{32} }}{{A_{11} }}\left( {\frac{{A_{14} A_{21} - A_{24} A_{11} }}{{ - A_{33} A_{22} + A_{23} A_{32} }}} \right);\quad k_{4} = 1 $$
(10.83)

for \( A_{11} \ne 0 \, ,A_{32} = 0 \, ,A_{33} \ne 0 \)

$$ k_{1} = - \frac{{A_{14} }}{{A_{11} }};\quad k_{2} = \frac{{A_{33} }}{{A_{11} }}\left( {\frac{{A_{14} A_{21} - A_{24} A_{11} }}{{A_{33} A_{22} - A_{23} A_{32} }}} \right);\quad k_{3} = - \frac{{A_{32} }}{{A_{33} }}k_{2} ;\quad k_{4} = 1 $$
(10.84)

for \( A_{11} = 0 \, , \, A_{14} \ne 0 \, , \, A_{32} \ne 0 \)

$$ k_{1} = \frac{{A_{14} }}{{A_{32} }}\left( {\frac{{A_{33} A_{22} - A_{23} A_{32} }}{{A_{21} A_{14} - A_{11} A_{24} }}} \right);\quad k_{2} = - \frac{{A_{33} }}{{A_{32} }};\quad k_{3} = 1;\quad k_{4} = - \frac{{A_{11} }}{{A_{14} }}k_{1} $$
(10.85)

for \( A_{11} = 0 \, ,\quad A_{14} \ne 0,\quad A_{32} = 0,\quad A_{33} \ne 0 \)

$$ k_{1} = A_{14} \left( {\frac{{A_{22} + k_{3} A_{32} }}{{A_{21} A_{14} - A_{11} A_{24} }}} \right);\quad k_{2} = 1;\quad k_{3} = - \frac{{A_{32} }}{{A_{33} }};\quad k_{4} = - \frac{{A_{11} }}{{A_{14} }}k_{1} $$
(10.86)

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Takabatake, H. (2019). Static and Dynamic Analyses of Rectangular Floating Plates Subjected to Moving Loads. In: Simplified Analytical Methods of Elastic Plates. Springer, Singapore. https://doi.org/10.1007/978-981-13-0086-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-0086-8_10

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-0085-1

  • Online ISBN: 978-981-13-0086-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics