Skip to main content

PID Control Using Extended Non-minimal State Space Model Optimization

  • Chapter
  • First Online:
Book cover Model Predictive Control
  • 1922 Accesses

Abstract

As a classic control strategy with simple structure, PID control has obtained a lot of applications in practical industrial processes [1,2,3,4]. It is known that the employment of traditional PID control in the processes with large time delay or strong nonlinearity may not achieve the desired control performance; meanwhile, there are challenges for conventional PID control to meet stricter and higher requirements with the rapid development of economy [5,6,7,8,9]. In order to enhance the control performance of PID control, many significant improvements have been presented [10,11,12,13,14].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bongulwar, M. R., & Patre, B. M. (2017). Design of PIλDμ controller for global power control of pressurized heavy water reactor. ISA Transactions, 69, 234–241.

    Article  Google Scholar 

  2. Shi, C. X., & Yang, G. H. (2018). Robust consensus control for a class of multi-agent systems via distributed PID algorithm and weighted edge dynamics. Applied Mathematics and Computation, 316, 73–88.

    Article  MathSciNet  Google Scholar 

  3. Pachauri, N., Rani, A., & Singh, V. (2017). Bioreactor temperature control using modified fractional order IMC-PID for ethanol production. Chemical Engineering Research and Design, 122, 97–112.

    Article  Google Scholar 

  4. Yuan, S., Zhao, C., & Guo, L. (2018). Uncoupled PID control of coupled multi-agent nonlinear uncertain systems. Journal of Systems Science and Complexity, 31(1), 4–21.

    Article  MathSciNet  Google Scholar 

  5. Zarei, M., Ghaderi, R., Kojuri, N., & Minuchehr, A. (2017). Robust PID control of power in lead cooled fast reactors: A direct synthesis framework. Annals of Nuclear Energy, 102, 200–209.

    Article  Google Scholar 

  6. Shen, J., Xin, B., Cui, H. Q., & Gao, W. X. (2017). Control of single-axis rotation INS by tracking differentiator based fuzzy PID. IEEE Transactions on Aerospace and Electronic Systems, 53(6), 2976–2986.

    Article  Google Scholar 

  7. Kuantama, E., Vesselenyi, T., Dzitac, S., & Tarca, R. (2017). PID and fuzzy-PID control model for quadcopter attitude with disturbance parameter. International Journal of Computers Communications & Control, 12(4), 519–532.

    Article  Google Scholar 

  8. Song, Y. D., Huang, X. C., & Wen, C. Y. (2017). Robust adaptive fault-tolerant PID control of MIMO nonlinear systems with unknown control direction. IEEE Transactions on Industrial Electronics, 64(6), 4876–4884.

    Article  Google Scholar 

  9. Zhang, R. M., Zeng, D. Q., Zhong, S. M., & Shi, K. B. (2017). Memory feedback PID control for exponential synchronisation of chaotic Lur’e systems. International Journal of Systems Science, 48(12), 2473–2484.

    Article  MathSciNet  Google Scholar 

  10. Soyguder, S., Karakose, M., & Alli, H. (2009). Design and simulation of self-tuning PID-type fuzzy adaptive control for an expert HVAC system. Expert Systems with Applications, 36(3), 4566–4573.

    Article  Google Scholar 

  11. Ang, K. H., Chong, G., & Li, Y. (2005). PID control system analysis, design, and technology. IEEE Transactions on Control Systems Technology, 13(4), 559–576.

    Article  Google Scholar 

  12. Paris, B., Eynard, J., Grieu, S., & Polit, M. (2011). Hybrid PID-fuzzy control scheme for managing energy resources in buildings. Applied Soft Computing, 11(8), 5068–5080.

    Article  Google Scholar 

  13. Leosirikul, A., Chilin, D., Liu, J. F., Davis, J. F., & Christofides, P. D. (2012). Monitoring and retuning of low-level PID control loops. Chemical Engineering Science, 69(1), 287–295.

    Article  Google Scholar 

  14. Khodabakhshian, A., & Hooshmand, R. (2010). A new PID controller design for automatic generation control of hydro power systems. International Journal of Electrical Power & Energy Systems, 32(5), 375–382.

    Article  Google Scholar 

  15. Zhang, J. M. (2017). Design of a new PID controller using predictive functional control optimization for chamber pressure in a coke furnace. ISA Transactions, 67, 208–214.

    Article  Google Scholar 

  16. Wu, S. (2015). Multivariable PID control using improved state space model predictive control optimization. Industrial & Engineering Chemistry Research, 54(20), 5505–5513.

    Article  Google Scholar 

  17. Li, H. S., & Zhang, J. M. (2016). Improved PID design using new state space predictive functional control optimization based structure. Chemometrics and Intelligent Laboratory Systems, 151, 95–102.

    Article  Google Scholar 

  18. Zhang, R. D., Wu, S., Lu, R. Q., & Gao, F. R. (2014). Predictive control optimization based PID control for temperature in an industrial surfactant reactor. Chemometrics and Intelligent Laboratory Systems, 135, 48–62.

    Article  Google Scholar 

  19. Zhang, R. D., Cao, Z. X., Bo, C. M., Li, P., & Gao, F. R. (2014). New PID controller design using extended non-minimal state space model based predictive functional control structure. Industrial & Engineering Chemistry Research, 53(8), 3283–3292.

    Article  Google Scholar 

  20. Wu, S. (2015). State space predictive functional control optimization based new PID design for multivariable processes. Chemometrics and Intelligent Laboratory Systems, 143(15), 16–27.

    Article  Google Scholar 

  21. Rivera, D., Morari, M., & Skogestad, S. (1986). Internal model control: PID controller design. Industrial & Engineering Chemistry Process Design and Development, 25, 252–265.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ridong Zhang .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, R., Xue, A., Gao, F. (2019). PID Control Using Extended Non-minimal State Space Model Optimization. In: Model Predictive Control. Springer, Singapore. https://doi.org/10.1007/978-981-13-0083-7_7

Download citation

Publish with us

Policies and ethics