Skip to main content

Introduction

  • Chapter
  • First Online:
Model Predictive Control
  • 1944 Accesses

Abstract

As to the control problem of industrial processes with various constraints, the desired control performance may not be obtained by the employment of conventional control strategies, such as PID control (Tyreus and Luyben in Ind Eng Chem Res 31:2625–2628, 1992, [1]; Skogestad in J Process Control 13:291–309, 2003, [2]; Padula and Visioli in J Process Control 21:69–81, 2011, [3]; Lee at al in AIChE J 44:106–115, 1998, [4]).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tyreus, B. D., & Luyben, W. L. (1992). Tuning PI controllers for integrator/dead time processes. Industrial & Engineering Chemistry Research, 31(11), 2625–2628.

    Article  Google Scholar 

  2. Skogestad, S. (2003). Simple analytic rules for model reduction and PID controller tuning. Journal of Process Control, 13(4), 291–309.

    Article  MathSciNet  Google Scholar 

  3. Padula, F., & Visioli, A. (2011). Tuning rules for optimal PID and fractional-order PID controllers. Journal of Process Control, 21(1), 69–81.

    Article  MATH  Google Scholar 

  4. Lee, Y., Park, S., Lee, M., & Brosilow, C. (1998). PID controller tuning for desired closed-loop responses for SI/SO systems. AIChE Journal, 44(1), 106–115.

    Article  Google Scholar 

  5. Qin, S. J., & Badgwell, T. A. (2003). A survey of industrial model predictive control technology. Control Engineering Practice, 11(7), 733–764.

    Article  Google Scholar 

  6. Lawrynczuk, M. (2017). Nonlinear predictive control of a boiler-turbine unit: A state-space approach with successive on-line model linearisation and quadratic optimisation. ISA Transactions, 67, 476–495.

    Article  Google Scholar 

  7. Lee, J. H. (2011). Model predictive control: Review of the three decades of development. International Journal of Control, Automation and Systems, 9(3), 415–424.

    Article  Google Scholar 

  8. Lu, X. L., Kiumarsi, B., Chai, T. Y., & Lewis, F. L. (2016). Data-driven optimal control of operational indices for a class of industrial processes. IET Control Theory and Applications, 10(12), 1348–1356.

    Article  MathSciNet  Google Scholar 

  9. Wang, T., Gao, H. J., & Qiu, J. B. (2016). A combined fault-tolerant and predictive control for network-based industrial processes. IEEE Transactions on Industrial Electronics, 63(4), 2529–2536.

    Google Scholar 

  10. Bindlish, R. (2015). Nonlinear model predictive control of an industrial polymerization process. Computers & Chemical Engineering, 73, 43–48.

    Article  Google Scholar 

  11. Huyck, B., Brabanter, J., Moor, B., Van Impe, J. F., & Logist, F. (2014). Online model predictive control of industrial processes using low level control hardware: A pilot-scale distillation column case study. Control Engineering Practice, 28, 34–48.

    Article  Google Scholar 

  12. Mayne, D. Q. (2014). Model predictive control: Recent developments and future promise. Automatica, 50(12), 2967–2986.

    Article  MathSciNet  MATH  Google Scholar 

  13. Gallego, A. J., & Camacho, E. F. (2012). Adaptative state-space model predictive control of a parabolic-trough field. Control Engineering Practice, 20(9), 904–911.

    Article  Google Scholar 

  14. Falugi, P., Olaru, S., & Dumur, D. (2010). Multi-model predictive control based on LMI: from the adaptation of the state-space model to the analytic description of the control law. International Journal of Control, 83(8), 1548–1563.

    Article  MathSciNet  MATH  Google Scholar 

  15. Miranda, H., Cortes, P., Yuz, J. I., & Rodriguez, J. (2009). Predictive torque control of induction machines based on state-space models. IEEE Transactions on Industrial Electronics, 56(6), 1916–1924.

    Article  Google Scholar 

  16. Simkoff, J. M., Wang, S. Y., Baldea, M., Chiang, L. H., Castillo, I., Bindlish, R., et al. (2018). Plant-model mismatch estimation from closed-loop data for state-space model predictive control. Industrial & Engineering Chemistry Research, 57(10), 3732–3741.

    Article  MATH  Google Scholar 

  17. Zou, T., Wu, S., & Zhang, R. D. (2018). Improved state space model predictive fault-tolerant control for injection molding batch processes with partial actuator faults using GA optimization. ISA Transactions, 73, 147–153.

    Article  Google Scholar 

  18. Wang, Y., & Boyd, S. (2010). Fast model predictive control using online optimization. IEEE Transactions on Control Systems Technology, 18(2), 267–278.

    Article  Google Scholar 

  19. Kim, I., Chan, R., & Kwak, S. (2017). Model predictive control method for CHB multi-level inverter with reduced calculation complexity and fast dynamics. IET Electric Power Applications, 11(5), 784–792.

    Article  Google Scholar 

  20. Huang, R., Biegler, L. T., & Patwardhan, S. C. (2010). Fast offset-free nonlinear model predictive control based on moving horizon estimation. Industrial & Engineering Chemistry Research, 49(17), 7882–7890.

    Article  Google Scholar 

  21. Zheng, Y., Li, S. Y., & Tan, R. M. (2018). Distributed model predictive control for on-connected microgrid power management. IEEE Transactions on Control Systems Technology, 26(3), 1028–1039.

    Article  Google Scholar 

  22. Velarde, P., Maestre, J. M., Ishii, H., & Negenborn, R. R. (2018). Vulnerabilities in Lagrange-based distributed model predictive control. Optimal Control Applications & Methods, 39(2), 601–621.

    Article  MathSciNet  MATH  Google Scholar 

  23. Long, Y. S., Liu, S., Xie, L. H., & Johansson, K. H. (2018). Distributed nonlinear model predictive control based on contraction theory. International Journal of Robust and Nonlinear Control, 28(2), 492–503.

    Article  MathSciNet  MATH  Google Scholar 

  24. Franze, G., Lucia, W., & Tedesco, F. (2018). A distributed model predictive control scheme for leader-follower multi-agent systems. International Journal of Control, 91(2), 369–382.

    Article  MathSciNet  MATH  Google Scholar 

  25. Pourkargar, D. B., Almansoori, A., & Daoutidis, P. (2017). Impact of decomposition on distributed model predictive control: A process network case study. Industrial & Engineering Chemistry Research, 56(34), 9606–9616.

    Article  Google Scholar 

  26. Tarisciotti, L., Lo Calzo, G., Gaeta, A., Zanchetta, P., Valencia, F., & Saez, D. (2016). A distributed model predictive control strategy for back-to-back converters. IEEE Transactions on Industrial Electronics, 63(9), 5867–5878.

    Article  Google Scholar 

  27. Kersbergen, B., van den Boom, T., & Schutter, B. (2016). Distributed model predictive control for railway traffic management. Transportation Research Part C-Emerging Technologies, 68, 462–489.

    Article  Google Scholar 

  28. Farina, M., Ferrari, G. P., Manenti, F., & Pizzi, E. (2016). Assessment and comparison of distributed model predictive control schemes: Application to a natural gas refrigeration plant. Computers & Chemical Engineering, 89, 192–203.

    Article  Google Scholar 

  29. Esfahani, N. R., & Khorasani, K. (2016). A distributed model predictive control (MPC) fault reconfiguration strategy for formation flying satellites. International Journal of Control, 89(5), 960–983.

    Article  MathSciNet  MATH  Google Scholar 

  30. Halvgaard, R., Vandenberghe, L., Poulsen, N. K., Madsen, H., & Jorgensen, J. B. (2016). Distributed model predictive control for smart energy systems. IEEE Transactions on Smart Grid, 7(3), 1675–1682.

    Article  Google Scholar 

  31. Farhadi, A., & Khodabandehlou, A. (2016). Distributed model predictive control with hierarchical architecture for communication: Application in automated irrigation channels. International Journal of Control, 89(8), 1725–1741.

    Article  MathSciNet  MATH  Google Scholar 

  32. Gao, Y. L., Xia, Y. Q., & Dai, L. (2015). Cooperative distributed model predictive control of multiple coupled linear systems. IET Control Theory and Applications, 9(17), 2561–2567.

    Article  MathSciNet  Google Scholar 

  33. Li, H. P., & Shi, Y. (2014). Robust distributed model predictive control of constrained continuous-time nonlinear systems: A robustness constraint approach. IEEE Transactions on Automatic Control, 59(6), 1673–1678.

    Article  Google Scholar 

  34. Stewart, B. T., Wright, S. J., & Rawlings, J. B. (2011). Cooperative distributed model predictive control for nonlinear systems. Journal of Process Control, 21(5), 698–704.

    Article  Google Scholar 

  35. Razavinasab, Z., Farsangi, M. M., & Barkhordari, M. (2017). State estimation-based distributed model predictive control of large-scale networked systems with communication delays. IET Control Theory and Applications, 11(15), 2497–2505.

    Article  MathSciNet  Google Scholar 

  36. Jalal, R. E., & Rasmussen, B. P. (2017). Limited-communication distributed model predictive control for coupled and constrained subsystems. IEEE Transactions on Control Systems Technology, 25(5), 1807–1815.

    Article  Google Scholar 

  37. Giselsson, P., Doan, M. D., Keviczky, T., Schutter, B., & Rantzer, A. (2013). Accelerated gradient methods and dual decomposition in distributed model predictive control. Automatica, 49(3), 829–833.

    Article  MathSciNet  MATH  Google Scholar 

  38. Zhuge, J. J., & Ierapetritou, M. G. (2015). An integrated framework for scheduling and control using fast model predictive control. AIChE Journal, 61(10), 3304–3319.

    Article  Google Scholar 

  39. Li, S. E., Jia, Z. H., Li, K. Q., & Cheng, B. (2015). Fast online computation of a model predictive controller and its application to fuel economy-oriented adaptive cruise control. IEEE Transactions on Intelligent Transportation Systems, 16(3), 1199–1209.

    Article  Google Scholar 

  40. Richards, A. (2015). Fast model predictive control with soft constraints. European Journal of Control, 25, 51–59.

    Article  MathSciNet  MATH  Google Scholar 

  41. Ahmed, H. (2015). Reactive power and voltage control in grid-connected wind farms: An online optimization based fast model predictive control approach. Electrical Engineering, 97(1), 35–44.

    Article  Google Scholar 

  42. Jaschke, J., Yang, X., & Biegler, L. T. (2014). Fast economic model predictive control based on NLP-sensitivities. Journal of Process Control, 24(8), 1260–1272.

    Article  Google Scholar 

  43. Lopez-Negrete, R., D’Amato, F. J., Biegler, L. T., & Kumar, A. (2013). Fast nonlinear model predictive control: Formulation and industrial process applications. Computers & Chemical Engineering, 51, 55–64.

    Article  Google Scholar 

  44. Xu, F., Chen, H., Gong, X., & Mei, Q. (2016). Fast nonlinear model predictive control on FPGA using particle swarm optimization. IEEE Transactions on Industrial Electronics, 63(1), 310–321.

    Article  Google Scholar 

  45. Zhang, Y. L., Wu, X. J., Yuan, X. B., Wang, Y. J., & Dai, P. (2016). Fast model predictive control for multilevel cascaded H-bridge STATCOM with polynomial computation time. IEEE Transactions on Industrial Electronics, 63(8), 5231–5243.

    Google Scholar 

  46. Nguyen, H. N., Bourdais, R., & Gutman, P. O. (2017). Fast model predictive control for linear periodic systems with state and control constraints. International Journal of Robust and Nonlinear Control, 27(17), 3703–3726.

    MathSciNet  MATH  Google Scholar 

  47. Summers, S., Jones, C. N., Lygeros, J., & Morari, M. (2011). A multiresolution approximation method for fast explicit model predictive control. IEEE Transactions on Automatic Control, 56(11), 2530–2541.

    Article  MathSciNet  MATH  Google Scholar 

  48. Lin, S., Schutter, B., Xi, Y. G., & Hellendoorn, H. (2011). Fast model predictive control for urban road networks via MILP. IEEE Transactions on Intelligent Transportation Systems, 12(3), 846–856.

    Article  Google Scholar 

  49. Wei, C. S., Luo, J. J., Dai, H. H., Yin, Z. Y., Ma, W. H., & Yuan, J. P. (2017). Globally robust explicit model predictive control of constrained systems exploiting SVM-based approximation. International Journal of Robust and Nonlinear Control, 27(16), 3000–3027.

    Article  MathSciNet  MATH  Google Scholar 

  50. Oberdieck, R., Diangelakis, N. A., & Pistikopoulos, E. N. (2017). Explicit model predictive control: A connected-graph approach. Automatica, 76, 103–112.

    Article  MathSciNet  MATH  Google Scholar 

  51. Chakrabarty, A., Dinh, V., Corless, M. J., Rundell, A. E., Zak, S. H., & Buzzard, G. T. (2017). Support vector machine informed explicit nonlinear model predictive control using low-discrepancy sequences. IEEE Transactions on Automatic Control, 62(1), 135–148.

    Article  MathSciNet  MATH  Google Scholar 

  52. Gao, Y., & Sun, L. N. (2016). Explicit solution of min-max model predictive control for uncertain systems. IET Control Theory and Applications, 10(4), 461–468.

    Article  MathSciNet  Google Scholar 

  53. Wallace, M., Kumar, S. S. P., & Mhaskar, P. (2016). Offset-free model predictive control with explicit performance specification. Industrial & Engineering Chemistry Research, 55(4), 995–1003.

    Article  Google Scholar 

  54. Oberdieck, R., & Pistikopoulos, E. N. (2015). Explicit hybrid model-predictive control: The exact solution. Automatica, 58, 152–159.

    Article  MathSciNet  MATH  Google Scholar 

  55. Rivotti, P., & Pistikopoulos, E. N. (2015). A dynamic programming based approach for explicit model predictive control of hybrid systems. Computers & Chemical Engineering, 72, 126–144.

    Article  Google Scholar 

  56. Hegrenaes, O., Gravdahl, J. T., & Tondel, P. (2005). Spacecraft attitude control using explicit model predictive control. Automatica, 41(12), 2107–2114.

    Article  MathSciNet  MATH  Google Scholar 

  57. Beccuti, A. G., Mariethoz, S., Cliquennois, S., Wang, S., & Morari, M. (2009). Explicit model predictive control of dc-dc switched-mode power supplies with extended Kalman filtering. IEEE Transactions on Industrial Electronics, 56(6), 1864–1874.

    Article  Google Scholar 

  58. Charitopoulos, V. M., & Dua, V. (2016). Explicit model predictive control of hybrid systems and multiparametric mixed integer polynomial programming. AIChE Journal, 62(9), 3441–3460.

    Article  Google Scholar 

  59. Chakrabarty, A., Buzzard, G. T., & Zak, S. H. (2017). Output-tracking quantized explicit nonlinear model predictive control using multiclass support vector machines. IEEE Transactions on Industrial Electronics, 64(5), 4130–4138.

    Article  Google Scholar 

  60. Nascu, L., Oberdieck, R., & Pistikopoulos, E. N. (2017). Explicit hybrid model predictive control strategies for intravenous anaesthesia. Computers & Chemical Engineering, 106, 814–825.

    Article  Google Scholar 

  61. Wang, F. X., Li, S. H., Mei, X. Z., Xie, W., Rodriguez, J., & Kennel, R. M. (2015). Model-based predictive direct control strategies for electrical drives: An experimental evaluation of PTC and PCC methods. IEEE Transactions on Industrial Informatics, 11(3), 671–681.

    Article  Google Scholar 

  62. Muller, M. A., Angeli, D., & Allgower, F. (2015). On Necessity and robustness of dissipativity in economic model predictive control. IEEE Transactions on Automatic Control, 60(6), 1671–1676.

    Article  MathSciNet  MATH  Google Scholar 

  63. Zhang, Y. C., & Qu, C. Q. (2015). Model predictive direct power control of PWM rectifiers under unbalanced network conditions. IEEE Transactions on Industrial Electronics, 62(7), 4011–4022.

    Article  Google Scholar 

  64. Ma, Y., & Cai, Y. L. (2018). A fuzzy model predictive control based upon adaptive neural network disturbance observer for a constrained hypersonic vehicle. IEEE Access, 6, 5927–5938.

    Article  Google Scholar 

  65. Du, G. P., Liu, Z. F., Du, F., & Li, J. J. (2017). Performance improvement of model predictive control using control error compensation for power electronic converters based on the Lyapunov function. Journal of Power Electronics, 17(4), 983–990.

    Google Scholar 

  66. Nodozi, I., & Rahmani, M. (2017). LMI-based model predictive control for switched nonlinear systems. Journal of Process Control, 59, 49–58.

    Article  Google Scholar 

  67. Ghaffari, V. (2017). A robust control system scheme based on model predictive controller (MPC) for continuous-time systems. Optimal Control Applications & Methods, 38(6), 1032–1041.

    Article  MathSciNet  MATH  Google Scholar 

  68. Song, Y., Fang, X. S., & Diao, Q. D. (2016). Mixed H2/H distributed robust model predictive control for polytopic uncertain systems subject to actuator saturation and missing measurements. International Journal of Systems Science, 47(4), 777–790.

    Article  MathSciNet  MATH  Google Scholar 

  69. Tahir, F., & Jaimoukha, I. M. (2013). Causal state-feedback parameterizations in robust model predictive control. Automatica, 49(9), 2675–2682.

    Article  MathSciNet  MATH  Google Scholar 

  70. Ghaffari, V., Naghavi, S. V., & Safavi, A. A. (2013). Robust model predictive control of a class of uncertain nonlinear systems with application to typical CSTR problems. Journal of Process Control, 23(4), 493–499.

    Article  Google Scholar 

  71. Mohammadkhani, M., Bayat, F., & Jalali, A. A. (2017). Robust output feedback model predictive control: A stochastic approach. Asian Journal of Control, 19(6), 2085–2096.

    Article  MathSciNet  MATH  Google Scholar 

  72. Ding, B. C., Xi, Y. G., & Li, S. S. (2004). A synthesis approach of on-line constrained robust model predictive control. Automatica, 40(1), 163–167.

    Article  MathSciNet  MATH  Google Scholar 

  73. Zhang, L. W., Xie, W., & Wang, J. C. (2017). Robust distributed model predictive control of linear systems with structured time-varying uncertainties. International Journal of Control, 90(11), 2449–2460.

    Article  MathSciNet  MATH  Google Scholar 

  74. Villanueva, M. E., Quirynen, R., Diehl, M., Chachuat, B., & Houska, B. (2017). Robust MPC via min-max differential inequalities. Automatica, 77, 311–321.

    Article  MathSciNet  MATH  Google Scholar 

  75. Liu, X. J., Jiang, D., & Lee, K. Y. (2015). Quasi-min-max fuzzy MPC of UTSG water level based on off-line invariant set. IEEE Transactions on Nuclear Science, 62(5), 2266–2272.

    Article  Google Scholar 

  76. Ramirez, D. R., Alamo, T., & Camacho, E. F. (2011). Computational burden reduction in min-max MPC. Journal of The Franklin Institute-Engineering and Applied Mathematics, 348(9), 2430–2447.

    Article  MathSciNet  MATH  Google Scholar 

  77. Mhaskar, P. (2006). Robust model predictive control design for fault-tolerant control of process systems. Industrial & Engineering Chemistry Research, 45(25), 8565–8574.

    Article  Google Scholar 

  78. Li, H. P., & Shi, Y. (2014). Event-triggered robust model predictive control of continuous-time nonlinear systems. Automatica, 50(5), 1507–1513.

    Article  MathSciNet  MATH  Google Scholar 

  79. Calafiore, G. C., & Fagiano, L. (2013). Robust model predictive control via scenario optimization. IEEE Transactions on Automatic Control, 58(1), 219–224.

    Article  MathSciNet  MATH  Google Scholar 

  80. Teng, L., Wang, Y. Y., Cai, W. J., & Li, H. (2017). Robust model predictive control of discrete nonlinear systems with time delays and disturbances via T-S fuzzy approach. Journal of Process Control, 53, 70–79.

    Article  Google Scholar 

  81. Ojaghi, P., Bigdeli, N., & Rahmani, M. (2016). An LMI approach to robust model predictive control of nonlinear systems with state-dependent uncertainties. Journal of Process Control, 47, 1–10.

    Article  Google Scholar 

  82. Brunner, F. D., Heemels, M., & Allgower, F. (2016). Robust self-triggered MPC for constrained linear systems: A tube-based approach. Automatica, 72, 73–83.

    Article  MathSciNet  MATH  Google Scholar 

  83. Ghasemi, M. S., & Afzalian, A. A. (2017). Robust tube-based MPC of constrained piecewise affine systems with bounded additive disturbances. Nonlinear Analysis-Hybrid Systems, 26, 86–100.

    Article  MathSciNet  MATH  Google Scholar 

  84. Bumroongsri, P., & Kheawhom, S. (2016). An off-line formulation of tube-based robust MPC using polyhedral invariant sets. Chemical Engineering Communications, 203(6), 736–745.

    Google Scholar 

  85. Bumroongsri, P. (2015). Tube-based robust MPC for linear time-varying systems with bounded disturbances. International Journal of Control, Automation and Systems, 13(3), 620–625.

    Article  Google Scholar 

  86. Yan, Z., Le, X. Y., & Wang, J. (2016). Tube-based robust model predictive control of nonlineat systems via collective neurodynamic optimization. IEEE Transactions on Industrial Electronics, 63(7), 4377–4386.

    Article  Google Scholar 

  87. Hariprasad, K., & Bhartiya, S. (2016). A computationally efficient robust tube based MPC for linear switched systems. Nonlinear Analysis-Hybrid Systems, 19, 60–76.

    Article  MathSciNet  MATH  Google Scholar 

  88. Mayne, D. Q., Kerrigan, E. C., van Wyk, E. J., & Falugi, P. (2011). Tube-based robust nonlinear model predictive control. International Journal of Robust and Nonlinear Control, 21(11), 1341–1353.

    Article  MathSciNet  MATH  Google Scholar 

  89. Farina, M., Giulioni, L., & Scattolini, R. (2016). Stochastic linear model predictive control with chance constraints—A review. Journal of Process Control, 44, 53–67.

    Article  Google Scholar 

  90. Wang, Y., Ocampo-Martinez, C., & Puig, V. (2016). Stochastic model predictive control based on Gaussian processes applied to drinking water networks. IET Control Theory and Applications, 10(8), 947–955.

    Article  MathSciNet  Google Scholar 

  91. Putz, E., & Cipriano, A. (2015). Hybrid model predictive control for flotation plants. Minerals Engineering, 70, 26–35.

    Article  Google Scholar 

  92. Sarailoo, M., Rahmani, Z., & Rezaie, B. (2014). Fuzzy predictive control of a boiler-turbine system based on a hybrid model system. Industrial & Engineering Chemistry Research, 53(6), 2362–2381.

    Article  Google Scholar 

  93. Rubagotti, M., Barcelli, D., & Bemporad, A. (2014). Robust explicit model predictive control via regular piecewise-affine approximation. International Journal of Control, 87(12), 2583–2593.

    Article  MathSciNet  MATH  Google Scholar 

  94. Ong, C. J., Wang, Z. M., & Dehghan, M. (2016). Model predictive control for switching systems with dwell-time restriction. IEEE Transactions on Automatic Control, 61(12), 4189–4195.

    Article  MathSciNet  MATH  Google Scholar 

  95. Xu, W. D., Zhang, J. F., & Zhang, R. D. (2017). Application of multi-model switching predictive functional control on the temperature system of an electric heating furnace. ISA Transactions, 68, 287–292.

    Article  Google Scholar 

  96. Hariprasad, K., & Bhartiya, S. (2017). An efficient and stabilizing model predictive control of switched system. IEEE Transactions on Automatic Control, 62(7), 3401–3407.

    Article  MathSciNet  MATH  Google Scholar 

  97. Zhang, L. X., Zhuang, S. L., & Braatz, R. D. (2016). Switched model predictive control of switched linear systems: Feasibility, stability and robustness. Automatica, 67, 8–21.

    Article  MathSciNet  MATH  Google Scholar 

  98. Khanmirza, E., Esmaeilzadeh, A., & Markazi, A. H. D. (2016). Predictive control of a building hybrid heating system for energy cost reduction. Applied Soft Computing, 46, 407–423.

    Article  Google Scholar 

  99. Yu, K. J., Yang, H. Z., Tan, X. G., Kawabe, T., Guo, Y. N., Liang, Q., et al. (2016). Model predictive control for hybrid electric vehicle platooning using slope information. IEEE Transactions on Intelligent Transportation Systems, 17(7), 1894–1909.

    Article  Google Scholar 

  100. Zhang, K., Sprinkle, J., & Sanfelice, R. G. (2016). Computationally aware switching criteria for hybrid model predictive control of cyber-physical systems. IEEE Transactions on Automation Science and Engineering, 13(2), 479–490.

    Article  Google Scholar 

  101. Zhao, J. F., & Wang, J. M. (2016). Integrated model predictive control of hybrid electric vehicles coupled with aftertreatment systems. IEEE Transactions on Vehicular Technology, 65(3), 1199–1211.

    Article  MathSciNet  Google Scholar 

  102. Lopez-Sanz, J., Ocampo-Martinez, C., Alvarez-Florez, J., Moreno-Eguilaz, M., Ruiz-Mansilla, R., Kalmus, J., et al. (2017). Nonlinear model predictive control for thermal management in plug-in hybrid electric vehicles. IEEE Transactions on Vehicular Technology, 66(5), 3632–3644.

    Google Scholar 

  103. Johansen, T. A. (2017). Toward dependable embedded model predictive control. IEEE Systems Journal, 11(2), 1208–1219.

    Article  Google Scholar 

  104. Necoara, I. (2015). Computational complexity certification for dual gradient method: Application to embedded MPC. Systems & Control Letters, 81, 49–56.

    Article  MathSciNet  MATH  Google Scholar 

  105. Lucia, S., Navarro, D., Lucia, O., Zometa, P., & Findeisen, R. (2018). Optimized FPGA implementation of model predictive control for embedded systems using high-level synthesis tool. IEEE Transactions on Industrial Informatics, 14(1), 137–145.

    Article  Google Scholar 

  106. Kufoalor, D. K. M., Imsland, L., & Johansen, T. A. (2016). Efficient implementation of step response models for embedded model predictive control. Computers & Chemical Engineering, 90, 121–135.

    Article  Google Scholar 

  107. Takacs, G., Batista, G., Gulan, M., & Rohal’-llkiv, B. (2016). Embedded explicit model predictive vibration control. Mechatronics, 36, 54–62.

    Article  Google Scholar 

  108. Alanqar, A., Durand, H., & Christofides, P. D. (2017). Fault-tolerant economic model predictive control using error-triggered online model identification. Industrial & Engineering Chemistry Research, 56(19), 5652–5667.

    Article  Google Scholar 

  109. Broomhead, T., Manzie, C., Hield, P., Shekhar, R., & Brear, M. (2017). Economic model predictive control and applications for diesel generators. IEEE Transactions on Control Systems Technology, 25(2), 388–400.

    Article  Google Scholar 

  110. Wang, Y., Puig, V., & Cembrano, G. (2017). Non-linear economic model predictive control of water distribution networks. Journal of Process Control, 56, 23–34.

    Article  Google Scholar 

  111. Olanrewaju, O. I., & Maciejowski, J. M. (2017). Implications of dissipativity on stability of economic model predictive control the indefinite linear quadratic case. Systems & Control Letters, 100, 43–50.

    Article  MathSciNet  MATH  Google Scholar 

  112. Maestre, J. M., Fernandez, M. I., & Jurado, T. (2018). An application of economic model predictive control to inventory management in hospitals. Control Engineering Practice, 71, 120–128.

    Article  Google Scholar 

  113. Deng, K., Sun, Y., Li, S. S., Lu, Y., Brouwer, J., Mehta, P. G., et al. (2015). Model predictive control of central chiller plant with thermal energy storage via dynamic programming and mixed-integer linear programming. IEEE Transactions on Automation Science and Engineering, 12(2), 565–579.

    Article  Google Scholar 

  114. Vichik, S., & Borrelli, F. (2014). Solving linear and quadratic programs with an analog circuit. Computers & Chemical Engineering, 70, 160–171.

    Article  Google Scholar 

  115. Jones, C. N., Grieder, P., & Rakovic, S. V. (2006). A logarithmic-time solution to the point location problem for parametric linear programming. Automatica, 42(12), 2215–2218.

    Article  MathSciNet  MATH  Google Scholar 

  116. Ke, F., Li, Z. J., Xiao, H. Z., & Zhang, X. B. (2017). Visual servoing of constrained mobile robots based on model predictive control. IEEE Transactions on Systems Man Cybernetics:Systems, 47(7), 1428–1438.

    Article  Google Scholar 

  117. Harrison, C. A., & Qin, S. J. (2009). Minimum variance performance map for constrained model predictive control. Journal of Process Control, 19(7), 1199–1204.

    Article  Google Scholar 

  118. Baker, R., & Swartz, C. L. E. (2008). Interior point solution of multilevel quadratic programming problems in constrained model predictive control applications. Industrial & Engineering Chemistry Research, 47(1), 81–91.

    Article  Google Scholar 

  119. Avanzini, G. B., Zanchettin, A. M., & Rocco, P. (2018). Constrained model predictive control for mobile robotic manipulators. Robotica, 36(1), 19–38.

    Article  Google Scholar 

  120. Zeilinger, M. N., Morari, M., & Jones, C. N. (2014). Soft constrained model predictive control with robust stability guarantees. IEEE Transactions on Automatic Control, 59(5), 1190–1202.

    Article  MathSciNet  MATH  Google Scholar 

  121. Lamburn, D. J., Gibbens, P. W., & Dumble, S. J. (2014). Efficient constrained model predictive control. European Journal of Control, 20(6), 301–311.

    Article  MathSciNet  Google Scholar 

  122. Tarczewski, T., & Grzesiak, L. M. (2016). Constrained state feedback speed control of PMSM based on model predictive approach. IEEE Transactions on Industrial Electronics, 63(6), 3867–3875.

    Article  Google Scholar 

  123. Liu, K. L., Li, K., & Zhang, C. (2017). Constrained generalized predictive control of battery charging process based on a coupled thermoelectric model. Journal of Power Sources, 347, 145–158.

    Article  Google Scholar 

  124. Zhang, R. D., Zou, Q., Cao, Z. X., & Gao, F. R. (2017). Design of fractional order modeling based extended non-minimal state space MPC for temperature in an industrial electric heating furnace. Journal of Process Control, 56, 13–22.

    Article  Google Scholar 

  125. Zhang, R. D., Lu, R. Q., & Xue, A. K. (2014). Predictive functional control for linear systems under partial actuator faults and application on an injection molding batch process. Industrial & Engineering Chemistry Research, 53(2), 723–731.

    Article  Google Scholar 

  126. Zhang, R. D., Xue, A. K., Wang, S. Q., & Ren, Z. Y. (2011). An improved model predictive control approach based on extended non-minimal state space formulation. Journal of Process Control, 21(8), 1183–1192.

    Article  Google Scholar 

  127. Zhang, R. D., Gao, F. R., & Christofides, P. D. (2017). An improved approach for H design of linear quadratic tracking control for chemical processes with partial actuator failure. Journal of Process Control, 58, 63–72.

    Article  Google Scholar 

  128. Zhang, R. D., Xue, A. K., Wang, S. Q., & Zhang, J. M. (2012). An improved state space model structure and a corresponding predictive functional control design with improved control performance. International Journal of Control, 85(8), 1146–1161.

    Article  MathSciNet  MATH  Google Scholar 

  129. Zhang, R. D., Wu, S., Lu, R. Q., & Gao, F. R. (2014). Predictive control optimization based PID control for temperature in an industrial surfactant reactor. Chemometrics and Intelligent Laboratory Systems, 135(15), 48–62.

    Article  Google Scholar 

  130. Zhang, R. D., Cao, Z. X., Bo, C. M., Li, P., & Gao, F. R. (2014). New PID controller design using extended non-minimal state space model based predictive functional control structure. Industrial & Engineering Chemistry Research, 53(8), 3283–3292.

    Article  Google Scholar 

  131. Wu, S. (2015). State space predictive functional control optimization based new PID design for multivariable processes. Chemometrics and Intelligent Laboratory Systems, 143(15), 16–27.

    Article  Google Scholar 

  132. Wu, S. (2015). Multivariable PID control using improved state space model predictive control optimization. Industrial & Engineering Chemistry Research, 54(20), 5505–5513.

    Article  Google Scholar 

  133. Zhang, R. D., Zou, H. B., Xue, A. K., & Gao, F. R. (2014). GA based predictive functional control for batch processes under actuator faults. Chemometrics and Intelligent Laboratory Systems, 137(15), 67–73.

    Article  Google Scholar 

  134. Zhang, R. D., Xue, A. K., & Gao, F. R. (2014). Temperature control of industrial coke furnace using novel state space model predictive control. IEEE Transactions on Industrial Informatics, 10(4), 2084–2092.

    Article  Google Scholar 

  135. Zhang, R. D., Xue, A. K., Lu, R. Q., Li, P., & Gao, F. R. (2014). Real-time implementation of improved state-space MPC for air supply in a coke furnace. IEEE Transactions on Industrial Electronics, 61(7), 3532–3539.

    Article  Google Scholar 

  136. Wang, L. P., & Young, P. C. (2006). An improved structure for model predictive control using non-minimal state space realisation. Journal of Process Control, 16(4), 355–371.

    Article  Google Scholar 

  137. Rivera, D., Morari, M., & Skogestad, S. (1986). Internal model control: PID controller design. Industrial & engineering chemistry process design and development, 25, 252–265.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ridong Zhang .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, R., Xue, A., Gao, F. (2019). Introduction. In: Model Predictive Control. Springer, Singapore. https://doi.org/10.1007/978-981-13-0083-7_1

Download citation

Publish with us

Policies and ethics