Advertisement

Garment Fit Evaluation Using Machine Learning Technology

  • Kaixuan Liu
  • Xianyi Zeng
  • Pascal Bruniaux
  • Xuyuan Tao
  • Edwin Kamalha
  • Jianping Wang
Chapter
Part of the Springer Series in Fashion Business book series (SSFB)

Abstract

Presently, garment fit evaluation mainly focuses on real try-on and rarely deals with virtual try-on. With the rapid development of e-commerce, there is a profound growth of garment purchases through the Internet. In this context, fit evaluation of virtual garment try-on is vital in the clothing industry. In this chapter, we propose a Naive Bayes-based model to evaluate garment fit. The inputs of the proposed model are digital clothing pressures of different body parts, generated from a 3D garment CAD software, while the output is the predicted result of garment fit (fit or unfit). To construct and train the proposed model, data on digital clothing pressures and garment real fit was collected for input and output learning data, respectively. By learning from these data, our proposed model can predict garment fit rapidly and automatically without any real try-on; therefore, it can be applied to remote garment fit evaluation in the context of e-shopping. Finally, the effectiveness of our proposed method was validated using a set of test samples. Test results showed that digital clothing pressure is a better index than ease allowance to evaluate garment fit, and machine learning-based garment fit evaluation methods have higher prediction accuracies.

Keywords

Digital clothing pressure Support vector machines Naive Bayes Active learning Ease allowance Real try-on 

Notes

Acknowledgements

This research was financially supported by China National Endowment for the Arts.

References

  1. Chen X, Tao X, Zeng X, Koehl L, Boulenguez-Phippen J (2015) Control and optimization of human perception on virtual garment products by learning from experimental data. Knowl-Based Syst 87:92–101.  https://doi.org/10.1016/j.knosys.2015.05.031CrossRefGoogle Scholar
  2. Choi S, Yang Y, Yang B, Cheung H (2015) Item-level RFID for enhancement of customer shopping experience in apparel retail. Comput Ind 71:10–23.  https://doi.org/10.1016/j.compind.2015.03.003CrossRefGoogle Scholar
  3. Çiflikli C, Kahya-Özyirmidokuz E (2010) Implementing a data mining solution for enhancing carpet manufacturing productivity. Knowl-Based Syst 23(8):783–788.  https://doi.org/10.1016/j.knosys.2010.05.001CrossRefGoogle Scholar
  4. Committee CNSM (2008) GBT 1335.2-2008. Standard sizing systems for garments. Standards Press of China, BeijingGoogle Scholar
  5. DesMarteau K (2000) CAD: let the fit revolution begin. Bobbin 42(2):42–56Google Scholar
  6. Domingos P, Pazzani M (1997) On the optimality of the simple Bayesian classifier under zero-one loss. Mach Learn 29(2):103–130.  https://doi.org/10.1023/a:1007413511361CrossRefGoogle Scholar
  7. Enterprice CD (2016) CLO 3D. https://www.clo3d.com/
  8. Fan J, Yu W, Hunter L (2004) Clothing appearance and fit: science and technology. Woodhead publishing Limited, Cambridge, UKGoogle Scholar
  9. Guo ZX, Wong WK, Leung SYS, Fan JT, Chan SF (2008) Genetic optimization of order scheduling with multiple uncertainties. Expert Syst Appl 35(4):1788–1801.  https://doi.org/10.1016/j.eswa.2007.08.058CrossRefGoogle Scholar
  10. Guo ZX, Wong WK, Leung SYS, Fan JT (2009) Intelligent production control decision support system for flexible assembly lines. Expert Syst Appl 36 (3, Part 1):4268–4277.  https://doi.org/10.1016/j.eswa.2008.03.023CrossRefGoogle Scholar
  11. Guo Z, Wong W, Leung S, Li M (2011) Applications of artificial intelligence in the apparel industry: a review. Text Res J 81(18):1871–1892.  https://doi.org/10.1177/0040517511411968CrossRefGoogle Scholar
  12. Hu Z-H, Ding Y-S, Zhang W-B, Yan Q (2008) An interactive co-evolutionary CAD system for garment pattern design. Comput-Aided Des 40(12):1094–1104.  https://doi.org/10.1016/j.cad.2008.10.010CrossRefGoogle Scholar
  13. Hui PCL, Chan KCC, Yeung KW, Ng FSF (2002) Fuzzy operator allocation for balance control of assembly lines in apparel manufacturing. IEEE T Eng Manag 49(2):173–180.  https://doi.org/10.1109/TEM.2002.1010885CrossRefGoogle Scholar
  14. Kamalha E, Zeng Y, Mwasiagi JI, Kyatuheire S (2013) The comfort dimension; a review of perception in clothing. J Sens Stud 28(6):423–444.  https://doi.org/10.1111/joss.12070CrossRefGoogle Scholar
  15. Kim H-S, Cho S-B (2000) Application of interactive genetic algorithm to fashion design. Eng Appl Artif Intel 13(6):635–644.  https://doi.org/10.1016/S0952-1976(00)00045-2CrossRefGoogle Scholar
  16. Kim H, Damhorst ML (2010) The relationship of body-related self-discrepancy to body dissatisfaction, apparel involvement, concerns with fit and size of garments, and purchase intentions in online apparel shopping. Cloth Text Res J 28(4):239–254.  https://doi.org/10.1177/0887302x10379266CrossRefGoogle Scholar
  17. Kim J, Forsythe S (2008) Adoption of virtual try-on technology for online apparel shopping. J Interact Mark 22(2):45–59.  https://doi.org/10.1002/dir.20113CrossRefGoogle Scholar
  18. Langley P, Iba W, Thompson K (1992) An analysis of Bayesian classifiers. In: AAAI’92 Proceedings of the tenth national conference on artificial intelligence, Menlo Park, CA. AAAI Press, pp 223–228Google Scholar
  19. Lee J, Nam Y, Cui MH, Choi KM, Choi YL (2007) Fit evaluation of 3D virtual garment. In: Aykin N (ed) Usability and internationalization. HCI and Culture. Springer, Berlin, pp 550–558.  https://doi.org/10.1007/978-3-540-73287-7_64
  20. Lin M-T (2009) The single-row machine layout problem in apparel manufacturing by hierarchical order-based genetic algorithm. Int J Cloth Sci Technol 21(1):31–43.  https://doi.org/10.1108/09556220810898872CrossRefGoogle Scholar
  21. Liu K, Kamalha E, Wang J, Agrawal T-K (2016a) Optimization design of cycling clothes’ patterns based on digital clothing pressures. Fiber Polym 17(9):1522–1529.  https://doi.org/10.1007/s12221-016-6402-2CrossRefGoogle Scholar
  22. Liu K, Wang J, Zeng X, Tao X, Bruniaux P, Edwin K (2016b) Fuzzy classification of young women’s lower body based on anthropometric measurement. Int J Ind Ergon 55(5):60–68.  https://doi.org/10.1016/j.ergon.2016.07.008CrossRefGoogle Scholar
  23. Liu K, Wang J, Zhu C, Hong Y (2016c) Development of upper cycling clothes using 3D-to-2D flattening technology and evaluation of dynamic wear comfort from the aspect of clothing pressure. Int J Cloth Sci Technol 28(6):736–749.  https://doi.org/10.1108/IJCST-02-2016-0016CrossRefGoogle Scholar
  24. Liu K, Wang J, Kamalha E, Li V, Zeng X (2017a) Construction of a body dimensions’ prediction model for garment pattern making based on anthropometric data learning. J Text Inst 108(12):2107–2114.  https://doi.org/10.1080/00405000.2017.1315794CrossRefGoogle Scholar
  25. Liu K, Wang J, Hong Y (2017b) Wearing comfort analysis from aspect of numerical garment pressure using 3D virtual-reality and data mining technology. Int J Cloth Sci Technol 29(2):166–179.  https://doi.org/10.1108/IJCST-03-2016-0017CrossRefGoogle Scholar
  26. Lo W-S, Hong T-P, Jeng R (2008) A framework of E-SCM multi-agent systems in the fashion industry. Int J Prod Econ 114(2):594–614.  https://doi.org/10.1016/j.ijpe.2007.09.010CrossRefGoogle Scholar
  27. Pan A, Leung S, Moon K, Yeung K (2009) Optimal reorder decision-making in the agent-based apparel supply chain. Expert Syst Appl 36(4):8571–8581.  https://doi.org/10.1016/j.eswa.2008.10.081CrossRefGoogle Scholar
  28. Sayem ASM, Kennon R, Clarke N (2010) 3D CAD systems for the clothing industry. Int J Fash Des Technol Educ 3(2):45–53.  https://doi.org/10.1080/17543261003689888CrossRefGoogle Scholar
  29. Seo H, Kim S-J, Cordier F, Hong K (2007) Validating a cloth simulator for measuring tight-fit clothing pressure. In: Proceedings of the 2007 ACM symposium on solid and physical modeling, Beijing, China, 2007. ACM, 1236308, pp 431–437.  https://doi.org/10.1145/1236246.1236308
  30. Shin E, Baytar F (2013) Apparel fit and size concerns and intentions to use virtual try-on: impacts of body satisfaction and images of models’ bodies. Cloth Text Res J 32(1):20–33.  https://doi.org/10.1177/0887302x13515072CrossRefGoogle Scholar
  31. Song HK, Ashdown SP (2012) Development of automated custom-made pants driven by body shape. Cloth Text Res J 30(4):315–329.  https://doi.org/10.1177/0887302x12462058CrossRefGoogle Scholar
  32. Song HK, Ashdown SP (2015) Investigation of the validity of 3-D virtual fitting for pants. Cloth Text Res J 33(4):314–330.  https://doi.org/10.1177/0887302X15592472CrossRefGoogle Scholar
  33. Sun Z-L, Choi T-M, Au K-F, Yu Y (2008) Sales forecasting using extreme learning machine with applications in fashion retailing. Decis Support Syst 46(1):411–419.  https://doi.org/10.1016/j.dss.2008.07.009CrossRefGoogle Scholar
  34. Tao X, Bruniaux P (2013) Toward advanced three-dimensional modeling of garment prototype from draping technique. Int J Cloth Sci Technol 25(4):266–283.  https://doi.org/10.1108/09556221311326301CrossRefGoogle Scholar
  35. Thomassey S, Bruniaux P (2013) A template of ease allowance for garments based on a 3D reverse methodology. Int J Ind Ergon 43(5):406–416.  https://doi.org/10.1016/j.ergon.2013.08.002CrossRefGoogle Scholar
  36. Vuruskan A, Ince T, Bulgun E, Guzelis C (2015) Intelligent fashion styling using genetic search and neural classification. Int J Cloth Sci Technol 27(2):283–301.  https://doi.org/10.1108/IJCST-02-2014-0022CrossRefGoogle Scholar
  37. Wang LC, Zeng XY, Koehl L, Chen Y (2015) Intelligent fashion recommender system: fuzzy logic in personalized garment design. IEEE Trans Human Mach Syst 45(1):95–109.  https://doi.org/10.1109/THMS.2014.2364398CrossRefGoogle Scholar
  38. Wong W, Guo Z (2010) A hybrid intelligent model for medium-term sales forecasting in fashion retail supply chains using extreme learning machine and harmony search algorithm. Int J Prod Econ 128(2):614–624.  https://doi.org/10.1016/j.ijpe.2010.07.008CrossRefGoogle Scholar
  39. Wong A, Li Y, Yeung P (2004) Predicting clothing sensory comfort with artificial intelligence hybrid models. Text Res J 74(1):13–19.  https://doi.org/10.1177/004051750407400103CrossRefGoogle Scholar
  40. Wong W, Leung S, Au K (2005) Real-time GA-based rescheduling approach for the pre-sewing stage of an apparel manufacturing process. Int J Adv Manuf Tech 25(1–2):180–188.  https://doi.org/10.1007/s00170-003-1819-3CrossRefGoogle Scholar
  41. Wong WK, Zeng X, Au W, Mok P, Leung S (2009) A fashion mix-and-match expert system for fashion retailers using fuzzy screening approach. Expert Syst Appl 36(2):1750–1764.  https://doi.org/10.1016/j.eswa.2007.12.047CrossRefGoogle Scholar
  42. Xia M, Wong WK (2014) A seasonal discrete grey forecasting model for fashion retailing. Knowl-Based Syst 57:119–126.  https://doi.org/10.1016/j.knosys.2013.12.014CrossRefGoogle Scholar
  43. Xia M, Zhang Y, Weng L, Ye X (2012) Fashion retailing forecasting based on extreme learning machine with adaptive metrics of inputs. Knowl-Based Syst 36:253–259.  https://doi.org/10.1016/j.knosys.2012.07.002CrossRefGoogle Scholar
  44. Yanmei L, Weiwei Z, Fan J, Qingyun H (2014) Study on clothing pressure distribution of calf based on finite element method. J Text Inst 105(9):955–961.  https://doi.org/10.1080/00405000.2013.865883CrossRefGoogle Scholar
  45. Young Kim E, Kim YK (2004) Predicting online purchase intentions for clothing products. Eur J Marketing 38(7):883–897.  https://doi.org/10.1108/03090560410539302CrossRefGoogle Scholar
  46. Zeng X, Koehl L (2003) Representation of the subjective evaluation of the fabric hand using fuzzy techniques. Int J Intell Syst 18(3):355–366.  https://doi.org/10.1002/int.10092CrossRefGoogle Scholar
  47. Zeng X, Liu Z (2005) A learning automata based algorithm for optimization of continuous complex functions. Inf Sci 174(3–4):165–175.  https://doi.org/10.1016/j.ins.2004.09.004CrossRefGoogle Scholar
  48. Zeng X, Ruan D, Koehl L (2008) Intelligent sensory evaluation: concepts, implementations, and applications. Math Comput Simulat 77(5–6):443–452.  https://doi.org/10.1016/j.matcom.2007.11.013CrossRefGoogle Scholar
  49. Zhang X, Yeung K, Li Y (2002) Numerical simulation of 3D dynamic garment pressure. Text Res J 72(3):245–252.  https://doi.org/10.1177/004051750207200311CrossRefGoogle Scholar
  50. Zhang M, Dong H, Fan X, Dan R (2015) Finite element simulation on clothing pressure and body deformation of the top part of men’s socks using curve fitting equations. Int J Cloth Sci Technol 27(2):207–220.  https://doi.org/10.1108/IJCST-12-2013-0139CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Kaixuan Liu
    • 1
    • 2
    • 3
  • Xianyi Zeng
    • 2
    • 3
  • Pascal Bruniaux
    • 2
    • 3
  • Xuyuan Tao
    • 2
    • 3
  • Edwin Kamalha
    • 2
    • 3
  • Jianping Wang
    • 4
  1. 1.Apparel and Art Design College, Xi’an Polytechnic UniversityXi’anChina
  2. 2.University of Lille 1, Nord de FranceLilleFrance
  3. 3.GEMTEX LaboratoryENSAITRoubaixFrance
  4. 4.College of Fashion and Design, Donghua UniversityShanghaiChina

Personalised recommendations