Skip to main content

Imaging Examination

  • Chapter
  • First Online:
Anatomy and Examination in Ocular Trauma

Part of the book series: Ocular Trauma ((OCTRA))

  • 780 Accesses

Abstract

Technology advances at a great pace. Particularly in medicine and, one may venture to say, even more so in the field of ophthalmology. Yet, regarding ocular trauma, the physician stands between multiple crossroads when deciding which imaging examination method to choose from. He must find balance between cost-benefit, medicolegal purposes, immediate or intermediate availability, and prioritizing strategy-modifying information, more often than not relying on century-old techniques, mixed with state-of-the-art technologies, and always based on solid clinical evaluation to make the best decision in a reasonably short time.

This chapter will attempt to introduce the imaging examination techniques of X-ray, computed tomography scan, magnetic resonance imaging, B-ultrasound, biomicroscopy, optical coherence tomography, and specular microscopy now available for the assessment in ocular trauma, their working mechanisms, scopes, as well as their strong and weak points.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mould R. Roentgen and the discovery of X-rays. Br J Radiol. 1995;68:1145–76.

    Article  CAS  Google Scholar 

  2. Kubal WS. Imaging of orbital trauma. Radiographics. 2008;28:1729–39.

    Article  Google Scholar 

  3. Saeed A, Cassidy L, Malone DE, Beatty S. Plain X-ray and computed tomography of the orbit in cases and suspected cases of intraocular foreign body. Eye (Lond). 2008;22:1373–7.

    Article  CAS  Google Scholar 

  4. Dunkin JM, Crum AV, Swanger RS, Bokhari SA. Globe trauma. Semin Ultrasound CT MR. 2011;32:51–6.

    Article  Google Scholar 

  5. Iinuma T, Hirota Y, Ishio K. Orbital wall fractures. Conventional views and CT. Rhinology. 1994;32:81–3.

    CAS  PubMed  Google Scholar 

  6. Herman GT. Fundamentals of computerized tomography: image reconstruction from projections. London: Springer Science & Business Media; 2009.

    Book  Google Scholar 

  7. Hounsfield GN. Computerized transverse axial scanning (tomography). 1. Description of system. Br J Radiol. 1973;46:1016–22.

    Article  CAS  Google Scholar 

  8. Loporchio D, Mukkamala L, Gorukanti K, Zarbin M, Langer P, Bhagat N. Intraocular foreign bodies: a review. Surv Ophthalmol. 2016;61:582–96.

    Article  Google Scholar 

  9. Edelman RR, Warach S. Magnetic resonance imaging. N Engl J Med. 1993;328:708–16.

    Article  CAS  Google Scholar 

  10. Lee HJ, Jilani M, Frohman L, Baker S. CT of orbital trauma. Emerg Radiol. 2004;10:168–72.

    Article  Google Scholar 

  11. Pinto A, Brunese L, Daniele S, Faggian A, Guarnieri G, Muto M, Romano L. Role of computed tomography in the assessment of intraorbital foreign bodies. Semin Ultrasound CT MR. 2012;33:392–5.

    Article  Google Scholar 

  12. Caranci F, Cicala D, Cappabianca S, Briganti F, Brunese L, Fonio P. Orbital fractures: role of imaging. Semin Ultrasound CT MR. 2012;33:385–91.

    Article  Google Scholar 

  13. Fulcher TP, McNab AA, Sullivan TJ. Clinical features and management of intraorbital foreign bodies. Ophthalmology. 2002;109:494–500.

    Article  Google Scholar 

  14. Gor DM, Kirsch CF, Leen J, Turbin R, Von Hagen S. Radiologic differentiation of intraocular glass: evaluation of imaging techniques, glass types, size, and effect of intraocular hemorrhage. AJR Am J Roentgenol. 2001;177:1199–203.

    Article  CAS  Google Scholar 

  15. John SS, Rehman TA, John D, Raju RS. Missed diagnosis of a wooden intra-orbital foreign body. Indian J Ophthalmol. 2008;56:322–4.

    Article  Google Scholar 

  16. Rao SK, Nunez D, Gahbauer H. MRI evaluation of an open globe injury. Emerg Radiol. 2003;10:144–6.

    Article  Google Scholar 

  17. Sung EK, Nadgir RN, Fujita A, Siegel C, Ghafouri RH, Traband A, Sakai O. Injuries of the globe: what can the radiologist offer? Radiographics. 2014;34:764–76.

    Article  Google Scholar 

  18. Mester V, Kuhn F. Intraocular foreign bodies. Ophthalmol Clin N Am. 2002;15:235–42.

    Article  Google Scholar 

  19. Upshaw JE, Brenkert TE, Losek JD. Ocular foreign bodies in children. Pediatr Emerg Care. 2008;24:409–14. quiz 15–7

    Article  Google Scholar 

  20. Woodcock MG, Scott RA, Huntbach J, Kirkby GR. Mass and shape as factors in intraocular foreign body injuries. Ophthalmology. 2006;113:2262–9.

    Article  Google Scholar 

  21. Zhang Y, Zhang M, Jiang C, Qiu HY. Intraocular foreign bodies in China: clinical characteristics, prognostic factors, and visual outcomes in 1,421 eyes. Am J Ophthalmol. 2011;152:66–73. e1

    Article  Google Scholar 

  22. Bray LC, Griffiths PG. The value of plain radiography in suspected intraocular foreign body. Eye (Lond). 1991;5(Pt 6):751–4.

    Article  Google Scholar 

  23. McElvanney AM, Fielder AR. Intraocular foreign body missed by radiography. BMJ. 1993;306:1060–1.

    Article  CAS  Google Scholar 

  24. Memon AA, Iqbal MS, Cheema A, Niazi JH. Visual outcome and complications after removal of posterior segment intraocular foreign bodies through pars plana approach. J Coll Physicians Surg Pak. 2009;19:436–9.

    PubMed  Google Scholar 

  25. Tate E, Cupples H. Detection of orbital foreign bodies with computed tomography: current limits. AJR Am J Roentgenol. 1981;137:493–5.

    Article  CAS  Google Scholar 

  26. Modjtahedi BS, Rong A, Bobinski M, McGahan J, Morse LS. Imaging characteristics of intraocular foreign bodies: a comparative study of plain film X-ray, computed tomography, ultrasound, and magnetic resonance imaging. Retina. 2015;35:95–104.

    Article  Google Scholar 

  27. Lit ES, Young LH. Anterior and posterior segment intraocular foreign bodies. Int Ophthalmol Clin. 2002;42:107–20.

    Article  Google Scholar 

  28. Barnes E, Griffiths M, Elliott A. Intraocular foreign body missed by computed tomography. BMJ. 1993;306:1542.

    Article  CAS  Google Scholar 

  29. Moisseiev E, Last D, Goez D, Barak A, Mardor Y. Magnetic resonance imaging and computed tomography for the detection and characterization of nonmetallic intraocular foreign bodies. Retina. 2015;35:82–94.

    Article  Google Scholar 

  30. Moisseiev E, Barequet D, Zunz E, Barak A, Mardor Y, Last D, Goez D, Segal Z, Loewenstein A. Validation of an algorithm for nonmetallic intraocular foreign Bodies’ composition identification based on computed tomography and magnetic resonance imaging. Retina. 2015;35:1898–904.

    Article  Google Scholar 

  31. Kim SY, Lee JH, Lee YJ, Choi BS, Choi JW, In HS, Kim SM, Baek JH. Diagnostic value of the anterior chamber depth of a globe on CT for detecting open-globe injury. Eur Radiol. 2010;20:1079–84.

    Article  Google Scholar 

  32. Greven CM, Engelbrecht NE, Slusher MM, Nagy SS. Intraocular foreign bodies: management, prognostic factors, and visual outcomes. Ophthalmology. 2000;107:608–12.

    Article  CAS  Google Scholar 

  33. Fielding JA. The assessment of ocular injury by ultrasound. Clin Radiol. 2004;59:301–12.

    Article  CAS  Google Scholar 

  34. Koo L, Kapadia MK, Singh RP, Sheridan R, Hatton MP. Gender differences in etiology and outcome of open globe injuries. J Trauma. 2005;59:175–8.

    Article  Google Scholar 

  35. Zilkha A. Computed tomography of blow-out fracture of the medial orbital wall. AJR Am J Roentgenol. 1981;137:963–5.

    Article  CAS  Google Scholar 

  36. Harris GJ, Garcia GH, Logani SC, Murphy ML, Sheth BP, Seth AK. Orbital blow-out fractures: correlation of preoperative computed tomography and postoperative ocular motility. Trans Am Ophthalmol Soc. 1998;96:329–47. discussion 47–53

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Curtin HD, Wolfe P, Schramm V. Orbital roof blow-out fractures. AJR Am J Roentgenol. 1982;139:969–72.

    Article  CAS  Google Scholar 

  38. Sugiura K, Yamada H, Okumoto T, Inoue Y, Onishi S. Quantitative assessment of orbital fractures in Asian patients: CT measurement of orbital volume. J Craniomaxillofac Surg. 2017;45(12):1944–7.

    Article  Google Scholar 

  39. Yan W, Chen Y, Qian Z, Selva D, Pelaez D, Tu Y, Wu W. Incidence of optic canal fracture in the traumatic optic neuropathy and its effect on the visual outcome. Br J Ophthalmol. 2017;101:261–7.

    PubMed  Google Scholar 

  40. Yang J, Li Q, Wang M, Cao X, Ding Y, Wang G, Liao C. Semiquantitative assessment of optic nerve injury using manganese-enhanced MRI. Jpn J Radiol. 2016;34:356–65.

    Article  Google Scholar 

  41. Dussik K. Ultraschall-Diagnostik, insbesondere bei Gehirnerkrankungen, mittels Hyperphonographie. Z Phys Ther Bader Klimanheikd. 1948;1(9–10):140–5.

    CAS  PubMed  Google Scholar 

  42. Campbell S. A short history of sonography in obstetrics and gynaecology. Facts Views Vis Obgyn. 2013;5(3):213–29.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Borden Institute, W. R. Ophthalmic care of the combat casualty. Bethesda, MA: Office of the Surgeon General, Department of the Army, United States of America; 2003.

    Google Scholar 

  44. Berges O. Orbital ultrasonography: principles and technique. In: Newton TH, editor. Radiology of the eye and orbit. New York, NY: Raven Press; 1990.

    Google Scholar 

  45. Kuhn F. Ocular traumatology. Berlin: Springer; 2008.

    Google Scholar 

  46. Pavlin CJ. Subsurface ultrasound microscopic imaging of the intact eye. Ophthalmology. 1990;97(2):244–50.

    Article  CAS  Google Scholar 

  47. Guha S. Role of ultrasound biomicroscopy (UBM) in the detection and localisation of. Ann Acad Med Singap. 2006;35:536–40.

    PubMed  Google Scholar 

  48. Deramo VA, Shah GK. The role of ultrasound biomicroscopy in ocular trauma. Trans Am Ophthalmol Soc. 1998;96:355–65. discussion 365–7

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Deramo VA, Shah GK. Ultrasound biomicroscopy as a tool for detecting and localizing occult foreign bodies after ocular trauma. Ophthalmology. 1999;106(2):301–5.

    Article  CAS  Google Scholar 

  50. Fercher A. Ophthalmic interferometry. In: von Bally G, Khanna S, editors. Proceedings of the International Conference on Optics in Life Sciences. Germany: Garmisch-Partenkirchen; 1990. p. 221–8.

    Google Scholar 

  51. Naohiro Tanno TI. 1990. Japan Patent No 2010042.

    Google Scholar 

  52. Huang D, Swanson E, Lin C, Schuman J, Stinson W, Chang W, et al. Optical coherence tomography. Science. 1991;254(5035):1178–81.

    Article  CAS  Google Scholar 

  53. Fercher AF. In vivo optical coherence tomography. Am J Ophthalmolol. 1993;116(1):113–4.

    Article  CAS  Google Scholar 

  54. Gabriele ML, Wollstein G. Optical coherence tomography: history, current status, and laboratory work. Invest Ophthalmol Vis Sci. 2011;52(5):2425–36.

    Article  Google Scholar 

  55. Yaqoob Z, Wu J, Yang C. Spectral domain optical coherence tomography: a better OCT imaging strategy. BioTechniques. 2005;39:S6–S13.

    Article  Google Scholar 

  56. Branco Ramos JL, Li Y, Huang D. Clinical and research applications of anterior segment optical coherence tomography – a review. Clin Exp Ophthalmol. 2009;37(1):81–9.

    Article  Google Scholar 

  57. Srinivasan VJ. Novel techniques for measuring capillary blood flow using OCT. Biomed Opt Express. 2012;3:612.

    Article  Google Scholar 

  58. Wojtkowski M, Srinivasan V, et al. Three-dimensional retinal imaging with high-speed ultrahigh-resolutionoptical coherence tomography. Ophthalmology. 2005;112:1734–−1746.

    Article  Google Scholar 

  59. Wu L, Grzybowski A. Current management of traumatic macular holes. J Ophthalmol. 2017;2017:1748135.

    Google Scholar 

  60. Volt A. Graefes archives kin. Ophthalmology. 1920;101:123.

    Google Scholar 

  61. Maurice DM. Cellular membrane activity in the corneal endothelium of the intact eye. Experientia. 1968;24:1094–5.

    Article  CAS  Google Scholar 

  62. Bourne WM, et al. Novel techniques for measuring capillary blood flow using OCT. Trans Sect Ophthalmol Am Acad Ophthalmol Otolaryngol. 1976;81(5):743–53.

    CAS  PubMed  Google Scholar 

  63. Laing RA, Sandstrom MM, Leibowitz HM. In vivo photomicrography of the corneal endothelium. Arch Ophthalmol. 1975;93:143–5.

    Article  CAS  Google Scholar 

  64. Hirst LW, Sterner R, Patel AJ, Dunkelberger G. The past, present, and future of clinical specular microscopy. Aust J Ophthalmol. 1983;11:33–8.

    Article  CAS  Google Scholar 

  65. Laing RA, Sandstrom MM, Leibowitz HM. Clinical specular microscopy. I Optical principles. Arch Ophthalmol. 1979;97(9):1714–9.

    Article  CAS  Google Scholar 

  66. Remington LA. Clinical anatomy of the visual system. 2nd ed. Oxford: Butterworth-Heinemann; 2004.

    Google Scholar 

  67. Capó-Aponte JE, et al. Effects of repetitive low-level blast exposure on visual system and ocular structure. J Rehabil Res Dev. 2015;52(3):273–90.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rousselot, A.M., Zhang, J., Liu, H. (2019). Imaging Examination. In: Yan, H. (eds) Anatomy and Examination in Ocular Trauma. Ocular Trauma. Springer, Singapore. https://doi.org/10.1007/978-981-13-0068-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-0068-4_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-0067-7

  • Online ISBN: 978-981-13-0068-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics