Skip to main content

Nonlinear Theoretical and Computational Analysis of Fluid Flows

  • Chapter
  • First Online:
DNS of Wall-Bounded Turbulent Flows

Abstract

Morkovin (Transition to turbulence, ASME FED Publication, USA, vol 114, pp 1–12, 1991, [33]) classified transition to turbulence in to two main types: (i) The classical primary instability route whose onset is marked along with the presence of TS waves (as in ZPGBL) and (ii) the bypass routes, which encompass all other possible transition scenarios that do not exhibit TS waves. Unfortunately, this is too simplistic a classification scheme for the reasons given in the introduction. Moreover, the central theme of this chapter, is to show some typical bypass transition events shown experimentally and the corresponding theoretical explanations of these events. Of special interest is the development of two nonlinear theories of receptivity, derived from Navier–Stokes equation, without making any assumptions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Badr, H. M., Coutanceau, M., Dennis, S. C. R., & Menard, C. (1990). Unsteady flow past a rotating circular cylinder at Reynolds numbers 1000 and 10,000. Journal of Fluid Mechanics, 220, 459–484.

    Article  Google Scholar 

  2. Benjamin, T. B., & Feir, J. E. (1967). The disintegration of wave trains on deep water. Part 1. Theory. Journal of Fluid Mechanics, 27(3), 417–430.

    Article  Google Scholar 

  3. Bhaumik, S., & Sengupta, T. K. (2011). On the divergence-free condition of velocity in two-dimensional velocity-vorticity formulation of incompressible Navier–Stokes equation. In 20th AIAA CFD Conference, 27–30 June, Honululu, Hawaii, USA

    Google Scholar 

  4. Bhaumik, S., & Sengupta, T. K. (2014). Precursor of transition to turbulence: Spatiotemporal wave front. Physical Review E, 89(4), 043018.

    Article  Google Scholar 

  5. Bhaumik, S., & Sengupta, T. K. (2015). A new velocity-vorticity formulation for direct numerical simulation of 3D transitional and turbulent flows. Journal of Computational Physics, 284, 230–260.

    Article  MathSciNet  Google Scholar 

  6. Breuer, K. S., & Kuraishi, T. (1993). Bypass transition in two and three dimensional boundary layers. In AIAA 93-3050

    Google Scholar 

  7. Brinckman, K. W., & Walker, J. D. A. (2001). Instability in a viscous flow driven by streamwise vortices. Journal of Fluid Mechanics, 432, 127–166.

    MATH  Google Scholar 

  8. Chen, K., Tu, J. H., & Rowley, C. (2012). Variants of dynamic mode decomposition: Boundary condition, Koopman and Fourier analyses. Journal of Nonlinear Science, 22, 887–915.

    Article  MathSciNet  Google Scholar 

  9. Daube, O. (1992). Resolution of the 2D Navier–Stokes equations in velocity-vortcity form by means of an influence matrix technique. Journal of Computational Physics, 103, 402–414.

    Article  MathSciNet  Google Scholar 

  10. Davies, S. J., & White, C. M. (1928). An experimental study of the flow of water in pipes of rectangular section. Proceedings of the Royal Society of London. Series A, 119, 92.

    Article  Google Scholar 

  11. Deane, A. E., Kevrekidis, I. G., Karniadakis, G. E., & Orszag, S. A. (1991). Low-dimensional models for complex geometry flows: Application to grooved channels and circular cylinders. Physics of Fluids, 3, 2337–2354.

    Article  Google Scholar 

  12. Degani, A. T., Walker, J. D. A., & Smith, F. T. (1998). Unsteady separation past moving surfaces. Journal of Fluid Mechanics, 375, 1–38.

    Article  MathSciNet  Google Scholar 

  13. Doering, C. R., & Gibbon, J. D. (1995). Applied analysis of the Navier–Stokes equations. UK: Cambridge University Press.

    Book  Google Scholar 

  14. Doligalski, T. L., Smith, C. R., & Walker, J. D. A. (1994). Vortex interaction with wall. Annual Review of Fluid Mechanics, 26, 573–616.

    Article  MathSciNet  Google Scholar 

  15. Donzis, D. A., & Yeung, P. K. (2010). Resolution effects and scaling in numerical simulations of passive scalar mixing in turbulence. Physica D, 239, 1278–87.

    Article  Google Scholar 

  16. Donzis, D. A., Yeung, P. K., & Sreenivasan, K. R. (2008). Energy dissipation rate and enstrophy in isotropic turbulence: resolution effects and scaling in direct numerical simulations. Physics of Fluids, 20, 045108-1–16.

    Article  Google Scholar 

  17. Drazin, P. G., & Reid, W. H. (1981). Hydrodynamic stability. UK: Cambridge University Press.

    MATH  Google Scholar 

  18. Eiseman, P. R. (1985). Grid generation for fluid mechanics computation. Annual Review of Fluid Mechanics, 17, 487–522.

    Article  Google Scholar 

  19. Gatski, T. B., Grosch, C. E., & Rose, M. E. (1982). A numerical study of the 2-dimensional Navier–Stokes equations in vorticity-velocity variables. Journal of Computational Physics, 48, 1–22.

    Article  Google Scholar 

  20. Guj, G., & Stella, F. (1993). A vorticity-velocity method for the numerical solution of 3D incompressible flows. Journal of Computational Physics, 106, 286–298.

    Article  MathSciNet  Google Scholar 

  21. Heisenberg, W. (1924). \(\ddot{\rm U}\)ber stabilit\({\ddot{\rm a}}\)t und turbulenz von fl\({\ddot{\rm u}}\)ssigkeitsstr\({\ddot{\rm o}}\)men. Annalen der Physik, 379, 577–627. (Translated as ‘On stability and turbulence of fluid flows’. NACA Tech. Memo. Wash. No 1291 1951).

    Article  Google Scholar 

  22. Hemati, M. S., Williams, M. O., & Rowley, C. W. (2014). Dynamic mode decomposition for large and streaming datasets. Physics of Fluids, 26(11), 111701.

    Article  Google Scholar 

  23. Holmes, P., Lumley, J. L., & Berkooz, G. (1996). Coherent structures, dynamical systems and symmetry. Cambridge, UK: Cambridge University Press.

    Book  Google Scholar 

  24. Huang, H., & Li, M. (1997). Finite-difference approximation for the velocity-vorticity formulation on staggered and non-staggered grids. Computers & Fluids, 26(1), 59–82.

    Article  Google Scholar 

  25. Kosambi, D. D. (1943). Statistics in function space. Journal of the Indian Mathematical Society, 7, 76–88.

    MathSciNet  MATH  Google Scholar 

  26. Landahl, M. T., & Mollo-Christensen, E. (1992). Turbulence and random processes in fluid mech. New York, USA: Cambridge University Press.

    MATH  Google Scholar 

  27. Leib, S. J., Wundrow, D. W., & Goldstein, M. E. (1999). Generation and growth of boundary layer disturbances due to free-stream turbulence. In AIAA Conference Paper, AIAA-99-0408

    Google Scholar 

  28. Lim, T. T., Sengupta, T. K., & Chattopadhyay, M. (2004). A visual study of vortex-induced sub-critical instability on a flat plate laminar boundary layer. Experiments in Fluids, 37, 47–55.

    Article  Google Scholar 

  29. Lo\(\acute{e}\)ve, M. (1978). Probability theory Vol. II (4th ed., Vol. 46)., Graduate Texts in Mathematics New York, USA: Springer.

    Google Scholar 

  30. Ma, X., & Karniadakis, G. E. (2002). A low-dimensional model for simulating three-dimensional cylinder flow. Journal of Fluid Mechanics, 458, 181–190.

    Article  MathSciNet  Google Scholar 

  31. Mathieu, J., & Scott, J. (2000). An introduction to turbulent flows. Cambridge, UK: Cambridge University Press.

    Book  Google Scholar 

  32. Monin, A. S., & Yaglom, A. M. (1971). Statistical fluid mechanics: mechanics of turbulence. Cambridge, MA, USA: The MIT Press.

    Google Scholar 

  33. Morkovin, M. V. (1991). Panoramic view of changes in vorticity distribution in transition, instabilities and turbulence. In D. C. Reda, H. L. Reed, & R. Kobyashi (Eds.), Transition to turbulence (Vol. 114, pp. 1–12). USA: ASME FED Publication.

    Google Scholar 

  34. Morzynski, M., Afanasiev, K., & Thiele, F. (1999). Solution of the eigenvalue problems resulting from global nonparallel flow stability analysis. Computer Methods in Applied Mechanics and Engineering, 169, 161–176.

    Article  Google Scholar 

  35. Nagarajan, S., Lele, S. K., & Ferziger, J. H. (2003). A robust high-order compact method for large eddy simulation. Journal of Computational Physics, 19, 392–419.

    Article  MathSciNet  Google Scholar 

  36. Napolitano, M., & Pascazio, G. (1991). A numerical method for the vorticity-velocity Navier–Stokes equations in two and three dimensions. Computers & Fluids, 19, 489–495.

    Article  Google Scholar 

  37. Noack, B. R., Afanasiev, K., Morzynski, M., Tadmor, G., & Thiele, F. (2003). A hierarchy of low-dimensional models for the transient and post-transient cylinder wake. Journal of Fluid Mechanics, 497, 335–363.

    Article  MathSciNet  Google Scholar 

  38. Obabko, A. V., & Cassel, K. W. (2002). Navier–Stokes solutions of unsteady separation induced by a vortex. Journal of Fluid Mechanics, 465, 99–130.

    Article  MathSciNet  Google Scholar 

  39. Peridier, V. J., Smith, F. T., & Walker, J. D. A. (1991). Vortex-induced boundary-layer separation. Part 1. The unsteady limit problem. \(Re \rightarrow \infty.\). Journal of Fluid Mechanics, 232, 99–131.

    Article  MathSciNet  Google Scholar 

  40. Peridier, V. J., Smith, F. T., & Walker, J. D. A. (1991). Vortex-induced boundary-layer separation. Part 2. Unsteady interacting boundary-layer theory. Journal of Fluid Mechanics, 232, 133–165.

    Article  MathSciNet  Google Scholar 

  41. Rempfer, D., & Fasel, H. (1994). Evolution of three-dimensional coherent structures in a flat-plate boundary layer. Journal of Fluid Mechanics, 260, 351–375.

    Article  Google Scholar 

  42. Rempfer, D., & Fasel, H. (1994). Dynamics of three-dimensional coherent structures in a flat-plate boundary layer. Journal of Fluid Mechanics, 275, 257–283.

    Article  Google Scholar 

  43. Robinson, S. K. (1991). Coherent motions in the turbulent boundary layer. Annual Review of Fluid Mechanics, 23, 601–639.

    Article  Google Scholar 

  44. Rowley, C., Mezi, I., Bagheri, S., Schlatter, P., & Henningson, D. S. (2009). Spectral analysis of nonlinear flows. Journal of Fluid Mechanics, 641, 1–13.

    Article  MathSciNet  Google Scholar 

  45. Schmid, P. J. (2010). Dynamic mode decomposition of numerical and experimental data. Journal of Fluid Mechanics, 656, 5–28.

    Article  MathSciNet  Google Scholar 

  46. Schlichting, H. (1933). Zur entstehung der turbulenz bei der plattenstr\({\ddot{\rm o}}\)mung. Nach. Gesell. d. Wiss. z. G\({\ddot{\rm o}}\)tt., MPK, 42, 181–208.

    Google Scholar 

  47. Schubauer, G. B., & Skramstad, H. K. (1947). Laminar boundary layer oscillations and the stability of laminar flow. Journal of Aerosol Science, 14, 69–78.

    Google Scholar 

  48. Sengupta, T. K. (2012). Instabilities of flows and transition to turbulence CRC press. Florida, USA: Taylor and Francis Group.

    Google Scholar 

  49. Sengupta, T. K. (2013). High accuracy computing methods: Fluid flows and wave phenomenon. USA: Cambridge University Press.

    Book  Google Scholar 

  50. Sengupta, T. K., & Lekoudis, S. G. (1985). Calculation of turbulent boundary layer over moving wavy surface. AIAA Journal, 23(4), 530–536.

    Article  Google Scholar 

  51. Sengupta, T. K., & Dipankar, A. (2005). Subcritical instability on the attachment-line of an infinite swept wing. Journal of Fluid Mechanics, 529, 147–171.

    Article  Google Scholar 

  52. Sengupta, T. K., & Poinsot, T. (2010). Instabilities of flows: With and without heat transfer and chemical reaction. Wien, New York: Springer.

    Book  Google Scholar 

  53. Sengupta, T. K., & Bhaumik, S. (2011). Onset of turbulence from the receptivity stage of fluid flows. Physical Review Letters, 154501, 1–5.

    Google Scholar 

  54. Sengupta, T. K., De, S., & Gupta, K. (2001). Effect of free-stream turbulence on flow over airfoil at high incidences. Journal of Fluids and Structures, 15(5), 671–690.

    Article  Google Scholar 

  55. Sengupta, T. K., Chattopadhyay, M., Wang, Z. Y., & Yeo, K. S. (2002). By-pass mechanism of transition to turbulence. Journal of Fluids and Structures, 16, 15–29.

    Article  Google Scholar 

  56. Sengupta, T. K., De, S., & Sarkar, S. (2003). Vortex-induced instability of an incompressible wall-bounded shear layer. Journal of Fluid Mechanics, 493, 277–286.

    Article  MathSciNet  Google Scholar 

  57. Sengupta, T. K., Ganeriwal, G., & De, S. (2003). Analysis of central and upwind compact schemes. Journal of Computational Physics, 192(2), 677–694.

    Article  Google Scholar 

  58. Sengupta, T. K., Kasliwal, A., De, S., & Nair, M. (2003). Temporal flow instability for Magnus–Robins effect at high rotation rates. Journal of Fluids and Structures, 17, 941–953.

    Article  Google Scholar 

  59. Sengupta, T. K., Rao, A. K., & Venkatasubbaiah, K. (2006). Spatiotemporal growing wave fronts in spatially stable boundary layers. Physical Review Letters, 96(22), 224504.

    Google Scholar 

  60. Sengupta, T. K., Rao, A. K., & Venkatasubbaiah, K. (2006). Spatiotemporal growth of disturbances in a boundary layer and energy based receptivity analysis. Physics of Fluids, 18, 094101.

    Article  MathSciNet  Google Scholar 

  61. Sengupta, T. K., Dipankar, A., & Sagaut, P. (2007). Error dynamics: Beyond von Neumann analysis. Journal of Computational Physics, 226(2), 1211–1218.

    Article  MathSciNet  Google Scholar 

  62. Sengupta, T. K., Singh, N., & Suman, V. K. (2010). Dynamical system approach to instability of flow past a circular cylinder. Journal of Fluid Mechanics, 656, 82–115.

    Article  MathSciNet  Google Scholar 

  63. Sengupta, T. K., Bhaumik, S., & Bhumkar, Y. G. (2011). Nonlinear receptivity and instability studies by POD. In AIAA Conference on Theoretical Fluid Mechanics, AIAA Paper No. 2011-3293

    Google Scholar 

  64. Sengupta, T. K., Singh, N., & Vijay, V. V. S. N. (2011). Universal instability modes in internal and external flows. Computers & Fluids, 40, 221–235.

    Article  MathSciNet  Google Scholar 

  65. Sengupta, T. K., Bhaumik, S., & Bhumkar, Y. (2012). Direct numerical simulation of two-dimensional wall-bounded turbulent flows from receptivity stage. Physical Review E, 85(2), 026308.

    Article  Google Scholar 

  66. Sengupta, T. K., Bhumkar, Y. G., & Sengupta, S. (2012). Dynamics and instability of a shielded vortex in close proximity of a wall. Computers & Fluids, 70, 166–175.

    Article  MathSciNet  Google Scholar 

  67. Sengupta, T. K., Singh, H., Bhaumik, S., & Chowdhury, R. R. (2013). Diffusion in inhomogeneous flows: Unique equilibrium state in an internal flow. Computers & Fluids, 88, 440–451.

    Article  MathSciNet  Google Scholar 

  68. Sengupta, T. K., Haider, S. I., Parvathi, M. K., & Pallavi, G. (2015). Enstrophy-based proper orthogonal decomposition for reduced-order modeling of flow a past cylinder. Physical Review E, 91(4), 043303.

    Article  MathSciNet  Google Scholar 

  69. Sharma, N., Sengupta, A., Rajpoot, M., Samuel, R. J., & Sengupta, T. K. (2017). Hybrid sixth order spatial discretization scheme for non-uniform Cartesian grids. Computers & Fluids, 157(3), 208–231.

    Article  MathSciNet  Google Scholar 

  70. Siegel, S. G., Seidel, J., Fagley, C., Luchtenburg, D. M., Cohen, K., & Mclaughlin, T. (2008). Low-dimensional modelling of a transient cylinder wake using double proper orthogonal decomposition. Journal of Fluid Mechanics, 610, 1–42.

    Article  MathSciNet  Google Scholar 

  71. Sirovich, L. (1987). Turbulence and the dynamics of coherent structures. Part (I) coherent structures, part (II) symmetries and trans-formations and part (III) dynamics and scaling. Quarterly of Applied Mathematics, 45(3), 561–590.

    Article  MathSciNet  Google Scholar 

  72. Smith, C. R., Walker, J. D. A., Haidari, A. H., & Soburn, U. (1991). On the dynamics of near-wall turbulence. Philosophical Transactions of the Royal Society of London A, 336, 131–175.

    Article  Google Scholar 

  73. Sommerfeld, A. (1949). Partial differential equation in physics. New York: Academic Press.

    MATH  Google Scholar 

  74. Stuart, J. T. (1960). On the nonlinear mechanics of wave disturbances in stable and unstable parallel flows. Part 1. The basic behaviour in plane Poiseuille flow. Journal of Fluid Mechanics, 9, 353–370.

    Article  MathSciNet  Google Scholar 

  75. Suman, V. K., Sengupta, T. K., Durga Prasad, C. J., Mohan, K. S., & Sanwalia, D. (2017). Spectral analysis of finite difference schemes for convection diffusion equation. Computers & Fluids, 150, 95–114.

    Article  MathSciNet  Google Scholar 

  76. Taylor, G. I. (1936). Statistical theory of turbulence. V. Effects of turbulence on boundary layer. Proceedings of the Royal Society A, 156(888), 307–317.

    Article  Google Scholar 

  77. Tennekes, H., & Lumley, J. L. (1971). First course in turbulence. Cambridge, MA: MIT Press.

    MATH  Google Scholar 

  78. Tollmien, W. (1931). The Production of Turbulence. NACA Report-TM 609.

    Google Scholar 

  79. Tu, J. H., Rowley, C. W., Luchtenburg, D. M., Brunton, S. L., & Kutz, J. N. (2014). On dynamic mode decomposition: Theory and applications. Journal of Computational Dynamics, 1(2), 391–421.

    Article  MathSciNet  Google Scholar 

  80. Van der Vorst, H. A. (1992). Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of non-symmetric linear systems. SIAM Journal on Scientific and Statistical Computing, 12, 631–644.

    Article  Google Scholar 

  81. Wu, X. H., Wu, J. Z., & Wu, J. M. (1995). Effective vorticity-velocity formulations for 3D incompressible viscous flows. Journal of Computational Physics, 122, 68–82.

    Article  MathSciNet  Google Scholar 

  82. Yeung, P. K., Donzis, D. A., & Sreenivasan, K. R. (2012). Dissipation, enstrophy and pressure statistics in turbulence simulations at high Reynolds numbers. Journal of Fluid Mechanics, 700, 5–15.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tapan K. Sengupta .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sengupta, T.K., Bhaumik, S. (2019). Nonlinear Theoretical and Computational Analysis of Fluid Flows. In: DNS of Wall-Bounded Turbulent Flows. Springer, Singapore. https://doi.org/10.1007/978-981-13-0038-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-0038-7_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-0037-0

  • Online ISBN: 978-981-13-0038-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics