Advertisement

Repeated Burst Error Correcting Linear Codes Over GF(q); q = 3

  • Vinod Tyagi
  • Subodh Kumar
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 834)

Abstract

In this paper, we develop a simple matrix method of constructing a parity check matrix for non binary (5k, k; b, q, m) linear codes capable of correcting m repeated burst errors of length b or less.

Keywords

Repeated burst Burst error Open loop and closed loop bursts Parity check digits Error patterns and syndrome 

Notes

Acknowledgement

The authors are thankful to Bharat Garg and Preeti for their technical assistance.

References

  1. 1.
    Abramson, N.M.: A class of systemic codes for non independent errors. IRE Trans. Inf. Theor. IT-5(4), 150–157 (1959)CrossRefGoogle Scholar
  2. 2.
    Bridwell, J.D., Wolf, J.K.: Burst distance and multiple burst correction. Bell Syst. Tech. J. 99, 889–909 (1970)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Chien, R.T., Tang, D.T.: Definition of a burst. IBM J. Res. Dev. 9(4), 292–293 (1965)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Dass, B.K., Verma, R.: Construction of m-repeated bursts error correcting binary linear code. Discret. Math. Algorithms Appl. 4(3), 1250043 (2012). (7 p.)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Dass, B.K., Verma, R.: Repeated burst error correcting linear codes. Asian Eur. J. Math. 1(3), 303–335 (2008)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Fire, P.: A class of multiple error correcting binary Codes for non independent errors, Sylvania report RSL- E-2. Sylvania Reconnaissance Systems Laboratory, Mountain View (1959)Google Scholar
  7. 7.
    Hamming, R.W.: Error detecting and error correcting codes. Bell Syst. Tech. J. 29, 147–160 (1950)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Peterson, W.W., Weldon Jr., E.J.: Error Correcting Codes, 2nd edn. The MIT Press, Mass (1972)zbMATHGoogle Scholar
  9. 9.
    Posner, E.C.: Simultaneous error correction and burst error detecting using binary linear cyclic codes. J. Soc. Ind. Appl. Math. 13(4), 1087–1095 (1965)CrossRefGoogle Scholar
  10. 10.
    Srinivas, K.V., Jain, R., Saurav, S., Sikdar, S.K.: Small-world network topology of hippocampal neuronal network is lost in an in vitro glutamate injury model of epilosy. Eur. Neurosci. 25, 3276–3280 (2007)CrossRefGoogle Scholar
  11. 11.
    Wolf, J.K.: On codes derivable from the tensor product of matrices. IEEE Trans. Inf. Theor. IT-11(2), 281–284 (1965)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Wyner, A.D.: Low-density-burst-correcting codes. IEEE Trans. Inf. Theor. 9, 124 (1963)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Shyam Lal College (Eve.)University of DelhiDelhiIndia
  2. 2.Shyam Lal CollegeUniversity of DelhiDelhiIndia

Personalised recommendations