Skip to main content

Single Noisy Image Super Resolution by Minimizing Nuclear Norm in Virtual Sparse Domain

  • Conference paper
  • First Online:
Computer Vision, Pattern Recognition, Image Processing, and Graphics (NCVPRIPG 2017)

Abstract

Super-resolving a noisy image is a challenging problem, and needs special care as compared to the conventional super resolution approaches, when the power of noise is unknown. In this scenario, we propose an approach to super-resolve single noisy image by minimizing nuclear norm in a virtual sparse domain that tunes with the power of noise via parameter learning. The approach minimizes nuclear norm to explore the inherent low-rank structure of visual data, and is further augmented with coarse-to-fine information by adaptively re-aligning the data along the principal components of a dictionary in virtual sparse domain. The experimental results demonstrate the robustness of our approach across different powers of noise.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    If we increase the area of the region to find similarity, a better result is expected in the cost of increased computational burden.

References

  1. Park, S.C., Park, M.K., Kang, M.G.: Super-resolution image reconstruction: a technical overview. IEEE Sig. Process. Mag. 20(3), 21–36 (2003)

    Article  Google Scholar 

  2. Stark, H., Oskoui, P.: High-resolution image recovery from image-plane arrays, using convex projections. J. Opt. Soc. Am. A 6(11), 1715–1726 (1989)

    Article  Google Scholar 

  3. Freeman, W., Jones, T., Pasztor, E.: Example-based super-resolution. IEEE Comput. Graph. Appl. 22(2), 56–65 (2002)

    Article  Google Scholar 

  4. Dong, W., Zhang, L., Shi, G., Wu, X.: Image deblurring and super-resolution by adaptive sparse domain selection and adaptive regularization. IEEE Trans. Image Process. 20(7), 1838–1857 (2011)

    Article  MathSciNet  Google Scholar 

  5. Yang, J., Wright, J., Huang, T., Ma, Y.: Image super-resolution as sparse representation of raw image patches. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8, June 2008

    Google Scholar 

  6. Mandal, S., Sao, A.K.: Employing structural and statistical information to learn dictionary(s) for single image super-resolution in sparse domain. Sig. Process. Image Commun. 48, 63–80 (2016)

    Article  Google Scholar 

  7. Glasner, D., Bagon, S., Irani, M.: Super-resolution from a single image. In: IEEE International Conference on Computer Vision (ICCV), pp. 349–356, September 2009

    Google Scholar 

  8. Yang, C.-Y., Huang, J.-B., Yang, M.-H.: Exploiting self-similarities for single frame super-resolution. In: Kimmel, R., Klette, R., Sugimoto, A. (eds.) ACCV 2010. LNCS, vol. 6494, pp. 497–510. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19318-7_39

    Chapter  Google Scholar 

  9. Vishnukumar, S., Nair, M.S., Wilscy, M.: Edge preserving single image super-resolution with improved visual quality. Sig. Process. 105, 283–297 (2014)

    Article  Google Scholar 

  10. Mandal, S., Bhavsar, A., Sao, A.: Super-resolving a single intensity/range image via non-local means and sparse representation. In: Indian Conference on Computer Vision, Graphics and Image Processing (ICVGIP), pp. 1–8, December 2014

    Google Scholar 

  11. Singh, A., Porikli, F., Ahuja, N.: Super-resolving noisy images. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2846–2853, June 2014

    Google Scholar 

  12. Mandal, S., Bhavsar, A., Sao, A.K.: Noise adaptive super-resolution from single image via non-local mean and sparse representation. Sig. Process. 132, 134–149 (2017)

    Article  Google Scholar 

  13. Zeyde, R., Elad, M., Protter, M.: On single image scale-up using sparse-representations. In: Boissonnat, J.-D., Chenin, P., Cohen, A., Gout, C., Lyche, T., Mazure, M.-L., Schumaker, L. (eds.) Curves and Surfaces 2010. LNCS, vol. 6920, pp. 711–730. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-27413-8_47

    Chapter  Google Scholar 

  14. Timofte, R., De Smet, V., Van Gool, L.: A+: adjusted anchored neighborhood regression for fast super-resolution. In: Cremers, D., Reid, I., Saito, H., Yang, M.-H. (eds.) ACCV 2014. LNCS, vol. 9006, pp. 111–126. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16817-3_8

    Chapter  Google Scholar 

  15. Yang, J., Wright, J., Huang, T., Ma, Y.: Image super-resolution via sparse representation. IEEE Trans. Image Process. 19(11), 2861–2873 (2010)

    Article  MathSciNet  Google Scholar 

  16. Mandal, S., Bhavsar, A., Sao, A.K.: Depth map restoration from undersampled data. IEEE Trans. Image Process. 26(1), 119–134 (2017)

    Article  MathSciNet  Google Scholar 

  17. Mandal, S., Sao, A.: Edge preserving single image super resolution in sparse environment. In: 20th IEEE International Conference on Image Processing (ICIP), pp. 967–971, September 2013

    Google Scholar 

  18. Yang, S., Wang, M., Chen, Y., Sun, Y.: Single-image super-resolution reconstruction via learned geometric dictionaries and clustered sparse coding. IEEE Trans. Image Process. 21(9), 4016–4028 (2012)

    Article  MathSciNet  Google Scholar 

  19. Zhang, K., Tao, D., Gao, X., Li, X., Xiong, Z.: Learning multiple linear mappings for efficient single image super-resolution. IEEE Trans. Image Process. 24(3), 846–861 (2015)

    Article  MathSciNet  Google Scholar 

  20. Huang, J.B., Singh, A., Ahuja, N.: Single image super-resolution from transformed self-exemplars. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5197–5206, June 2015

    Google Scholar 

  21. Wang, S., Zhang, L., Liang, Y.: Nonlocal spectral prior model for low-level vision. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds.) ACCV 2012. LNCS, vol. 7726, pp. 231–244. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37431-9_18

    Chapter  Google Scholar 

  22. Gu, S., Xie, Q., Meng, D., Zuo, W., Feng, X., Zhang, L.: Weighted nuclear norm minimization and its applications to low level vision. Int. J. Comput. Vis. 121(2), 183–208 (2017)

    Article  Google Scholar 

  23. Dong, W., Shi, G., Li, X., Ma, Y., Huang, F.: Compressive sensing via nonlocal low-rank regularization. IEEE Trans. Image Process. 23(8), 3618–3632 (2014)

    Article  MathSciNet  Google Scholar 

  24. Dong, W., Shi, G., Li, X.: Nonlocal image restoration with bilateral variance estimation: a low-rank approach. IEEE Trans. Image Process. 22(2), 700–711 (2013)

    Article  MathSciNet  Google Scholar 

  25. Cai, J.F., Cands, E.J., Shen, Z.: A singular value thresholding algorithm for matrix completion. SIAM J. Optim. 20(4), 1956–1982 (2010)

    Article  MathSciNet  Google Scholar 

  26. Wang, Z., Bovik, A., Sheikh, H., Simoncelli, E.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Srimanta Mandal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mandal, S., Rajagopalan, A.N. (2018). Single Noisy Image Super Resolution by Minimizing Nuclear Norm in Virtual Sparse Domain. In: Rameshan, R., Arora, C., Dutta Roy, S. (eds) Computer Vision, Pattern Recognition, Image Processing, and Graphics. NCVPRIPG 2017. Communications in Computer and Information Science, vol 841. Springer, Singapore. https://doi.org/10.1007/978-981-13-0020-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-0020-2_15

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-0019-6

  • Online ISBN: 978-981-13-0020-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics