Skip to main content

Natural Ventilating Behavior of Z-Shaped Pedestrian Underpass in Wuhan

  • Conference paper
  • First Online:
Proceedings of GeoShanghai 2018 International Conference: Tunnelling and Underground Construction (GSIC 2018)

Included in the following conference series:

Abstract

In southern China, The moisture condensation is common in the urban underground facilities due to the humid and rainy climate. In order to reduce the maintenance costs the natural ventilation should be used in urban pedestrian underpass as far as possible. The planar layout of the underpass is very important for its ventilation effect so as to avoid condensation problem. Taking the Cuiliu street pedestrian underpass in city of Wuhan as a typical case, the field test was carried out in this paper on the Z-Shaped pedestrian underpass, and analyzed its ventilation effect by the computational fluid dynamic (CFD) numerical simulation. Results show that outcomes of the numerical simulation are close to the measured data, which verifies the reliability of simulation method. Thus Z-Shape is a good layout plan because of the better ventilation effect so that it can effectively prevent the moisture condensation for the urban pedestrian underpass even in moist environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ning-han, X.: Ventilation problem of shallow buried underground walkway. Build. Therm. Energy Vent. 20(4), 46–48 (2001)

    Google Scholar 

  2. Guodong, W., Angui, L., Shaohui, Q.: Study on hot and humid environment test of underground pedestrian crossing in Xi’an. Build. Therm. Vent. Air Cond. 28(2), 25–28 (2009)

    Google Scholar 

  3. Jingxuan, W., Haibo, S.: Experimental study and numerical simulation of flow field in subway station model. Energy Res. Inform. 24(1), 39–43 (2008)

    Google Scholar 

  4. Blocken, B., Carmeliet, J., Stathopoulos, T.: CFD evaluation of wind speed conditions between passages between parallel buildings-effect of wall-material roughness modifications for the atmospheric boundary layer flow. J. Exp. Med. 95(9–11), 941–962 (2007)

    Google Scholar 

  5. Limtrakarn, W., Nuansirikomon, S., Bunmongkolruksa, P., Kruenate, J.: Air ventilation and temperature distributions in strawberry greenhouse by computational fluid dynamics. Acta Hort. 719(719), 173–180 (2006)

    Google Scholar 

  6. Bo, Z., Zhimin, G.: Numerical simulation of ventilation effect induced by underground garage. Sci. Technol. Eng. 9(7), 1766–1771 (2009)

    Google Scholar 

  7. Fengdong, Y., Jun, Y.S., Xiangjin, Y.: Subway side platform air conditioning airflow CFD simulation. J. Southwest Jiaotong Univ. 40(3), 303–307 (2005)

    Google Scholar 

  8. Xiyan, G., Chunsheng, Y., Xiangling, C., et al.: Study on CFD simulation of ventilation scheme in Harbin subway station. J. Archit. Sci. 23(10), 23–27 (2007)

    Google Scholar 

  9. Gao, C.M., Weiliang, W.: Optimization of Underground Space Ventilation. Sci. Technol. Eng. 15(12), 265–269 (2015)

    Google Scholar 

Download references

Acknowledgments

The research is supported by the Project for Building Science and Technology of Hu-bei Province, China (Grant Number 2013014), and the fifth phase of ‘333 project’ in Jiangsu Province of China (Grant No. BRA2016113).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiongwei Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, X., Qin, Y., Wang, Y. (2018). Natural Ventilating Behavior of Z-Shaped Pedestrian Underpass in Wuhan. In: Zhang, D., Huang, X. (eds) Proceedings of GeoShanghai 2018 International Conference: Tunnelling and Underground Construction. GSIC 2018. Springer, Singapore. https://doi.org/10.1007/978-981-13-0017-2_64

Download citation

Publish with us

Policies and ethics