Skip to main content

Included in the following conference series:

  • 3071 Accesses

Abstract

In urban cities like Shanghai, the increasing need for urban tunnelling to serve the ever-growing population in space-constrained cities will result in part of the proposed tunnelling route running close or beneath infrastructures, such as pipelines and buildings founded on shallow or pile foundations. The ground volume losses due to the over-excavation of the tunnel result in ground, subsurface and lateral movements. These ground movements, result in additional stress and deformation on the existing infrastructures. Thus, a type of displacement control methods has been developed and widely applied to the risk assessment of the infrastructures subjected to tunneling. This paper will fully review the existing studies on the displacement control methods and their results to conclude critical responses of various infrastructures, provide effective methods of evaluating the responses for practical engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mroueh, H., Shahrour, I.: Three-dimensional finite element analysis of the interaction between tunneling and pile foundations. Int. J. Numer. Anal. Meth. Geomech. 26, 217–230 (2002)

    Article  Google Scholar 

  2. Gordon, T.K., Ng, C.W.W.: Effects of advancing open face tunneling on an existing loaded pile. J. Geotech. Geoenviron. Eng. 131(2), 193–201 (2005)

    Article  Google Scholar 

  3. Zhang, Z., Huang, M.: Geotechnical influence on existing subway tunnels induced by multiline tunneling in Shanghai soft soil. Comput. Geotech. 56, 121–132 (2014)

    Article  Google Scholar 

  4. Cheng, C.Y., Dasari, G.R., Chow, Y.K., Leung, C.F.: Finite element analysis of tunnel-soil-pile interaction using displacement control model. Tunn. Undergr. Space Technol. 22(4), 450–466 (2007)

    Article  Google Scholar 

  5. Yang, C., Huang, M., Liu, M.: Three-dimensional numerical analysis of effect of tunnel construction on adjacent pile foundation. Chin. J. Rock Mech. Eng. 26(s1), 2601–2607 (2007). (in Chinese)

    Google Scholar 

  6. Sagaseta, C.: Analysis of undrained soil deformation due to ground loss. Geotechnique 37(3), 301–320 (1987)

    Article  Google Scholar 

  7. Hagiwara, T., Grant, R.J., Calvello, M., Taylor, R.N.: The effect of overlying strata on the distribution of ground movements induced by tunneling in clay. Soils Found. 39(3), 63–73 (1999)

    Article  Google Scholar 

  8. Deane, A.P., Bassett, R.H.: The Heathrow express trial tunnel. Proc. Inst. Civil Eng. Geotech. Eng. 113(3), 144–156 (1995)

    Article  Google Scholar 

  9. Zhang, Z., Huang, M., Zhang, M.: Theoretical prediction of ground movements induced by tunnelling in multi-layered soils. Tunn. Undergr. Space Technol. 26(2), 345–355 (2011)

    Article  Google Scholar 

  10. Zhang, Z., Huang, M.: Boundary element model for analysis of the mechanical behavior of existing pipelines subjected to tunneling-induced deformations. Comput. Geotech. 46, 93–103 (2012)

    Article  Google Scholar 

  11. Zhang, Z., Huang, M., Zhang, M.: Deformation analysis of tunnel excavation below existing pipelines in multi-layered soils based on displacement controlled coupling numerical method. Int. J. Numer. Anal. Meth. Geomech. 36(11), 1440–1460 (2012)

    Article  Google Scholar 

  12. Potts, D.M., Addenbrooke, T.I.: A structures influence on tunneling induced ground movements. Proc. Inst. Civil Eng. Geotech. Eng. 125(2), 109–125 (1997)

    Article  Google Scholar 

  13. Goh, K.H., Mair, R.J.: Building damage assessment for deep excavations in singapore and the influence of building stiffness. Geotech. Eng. J. SEAGS AGSSEA 42(3), 1–12 (2011)

    Google Scholar 

  14. Stewart, D.P., Jewell, R.J., Randolph, M.F.: Design of piled bridge abutments on soft clay for loading from lateral soil movements. Geotechnique 44(2), 277–296 (1994)

    Article  Google Scholar 

  15. Attewell, P.B., Yeates, J., Selby, A.R.: Soil Movements Induced by Tunneling and Their Effects on Pipelines and Structures. Blackie & Son Ltd, London (1986)

    Google Scholar 

  16. Klar, A., Voster, T.E.B., Soga, K., Mair, R.J.: Soil–pipe interaction due to tunneling: comparison between Winkler and elastic continuum solutions. Géotechnique 55(6), 461–466 (2005)

    Article  Google Scholar 

  17. Klar, A., Marshall, A.M., Soga, K., Mair, R.J.: Tunneling effects on jointed pipelines. Can. Geotech. J. 45(1), 131–139 (2008)

    Article  Google Scholar 

  18. Marshall, A.M., Elkayam, I., Klar, A.: Centrifuge and discrete element modelling of tunnelling effects on pipelines. In: 7th International Conference on Physical Modelling in Geotechnics, pp. 633–637. Taylor & Francis Group, London (2010)

    Chapter  Google Scholar 

  19. Chen, L.T., Poulos, H.G., Loganathan, N.: Pile responses caused by tunneling. J. Geotech. Geoenviron. Eng. 125(3), 207–215 (1999)

    Article  Google Scholar 

  20. Loganathan, N., Poulos, H.G., Xu, K.J.: Ground and pile-group responses due to tunnelling. Soils Found. 41(1), 57–67 (2001)

    Article  Google Scholar 

  21. Peck, R.B.: Deep excavations and tunneling in soft ground. In: Proceedings of the 7th International Conference on Soil Mechanics and Foundation Engineering, Mexico, pp. 225–290 (1969)

    Google Scholar 

  22. Loganathan, N., Poulos, H.G.: Analytical prediction for tunneling-induced ground movements in clays. J. Geotech. Geoenviron. Eng. 124(9), 846–856 (1998)

    Article  Google Scholar 

  23. Poulos, H.G., Davis, E.H.: Pile Foundation Analysis and Design. John Wiley & Sons, New York (1980)

    Google Scholar 

  24. Mindlin, R.D.: Force at a point in the interior of a semi-infinite solid. Physics 7(5), 195–202 (1936)

    Article  Google Scholar 

  25. Vesic, A.B.: Bending of beams resting on isotropic elastic solids. J. Eng. Mech. Div. 87, 35–53 (1961)

    Google Scholar 

  26. Yu, J., Zhang, C.R., Huang, M.S.: Soil–pipe interaction due to tunnelling: assessment of Winkler modulus for underground pipelines. Comput. Geotech. 50, 17–28 (2013)

    Article  Google Scholar 

  27. Burmister, D.M.: The general theory of stresses and displacements in layered soil systems (I, II, III). J. Appl. Phys. 6(2), 89–96; 6(3), 126–127; 6(5), 296–302 (1945)

    Google Scholar 

  28. Ai, Z.Y., Yue, Z.Q., Tham, L.G., Yang, M.: Extended Sneddon and Muki solutions for multilayered elastic materials. Int. J. Eng. Sci. 40, 1453–1483 (2002)

    Article  Google Scholar 

  29. Zhang, C., Yu, J., Huang, M.S.: Effects of tunneling on existing pipelines in layered soils. Comput. Geotech. 43(2), 12–25 (2012)

    Article  Google Scholar 

  30. Singhai, A.C.: Behavior of jointed ductile iron pipelines. J. Transp. Eng. 110(2), 235–250 (1984)

    Article  Google Scholar 

  31. Vorster, T.E.B.: The effect of tunneling on buried pipes. Ph.d. thesis. University of Cambridge, UK (2005)

    Google Scholar 

  32. Burland, J.B., Wroth, C.P.: Settlement of buildings and associated damage. In: Conference on Settlement of Structures, pp. 611–654. Pentch Press, London (1974)

    Google Scholar 

  33. Franzius, J.N., Potts, D.M., Burland, J.B.: The response of surface structures to tunnel construction. Proc. Inst. Civil Eng. Geotech. Eng. 159(1), 3–17 (2006)

    Article  Google Scholar 

  34. Huang, M., Zhang, C., Li, Z.: A simplified analysis method for the influence of tunneling on grouped piles. Tunn. Undergr. Space Technol. 24(4), 410–422 (2009)

    Article  Google Scholar 

  35. Huang, M., Mu, L.: Vertical response of pile raft foundations subjected to tunneling-induced ground movements in layered soil. Int. J. Numer. Anal. Meth. Geomech. 36(8), 977–1001 (2012)

    Article  Google Scholar 

  36. Mu, L., Huang, M., Finno, R.J.: Tunnelling effects on lateral behavior of pile rafts in layered soil. Tunn. Undergr. Space Technol. 28(28), 192–201 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to express their gratitude to the National Key R&D Program of China (Grant No. 2016YFC0800200), the National Natural Science Foundation of China (Grant No. 51738010) and Singapore Housing and Development research grant on tunnel-foundation interaction (Grant No. R-302-000-086-490) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maosong Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Huang, M., Yu, J., Zhang, C., Mu, L., Leung, C.F. (2018). Effects of Tunneling on Underground Infrastructures. In: Zhang, D., Huang, X. (eds) Proceedings of GeoShanghai 2018 International Conference: Tunnelling and Underground Construction. GSIC 2018. Springer, Singapore. https://doi.org/10.1007/978-981-13-0017-2_1

Download citation

Publish with us

Policies and ethics