Skip to main content

Load-Deformation Responses of Ballasted Rail Tracks: Laboratory and Discrete-Continuum Modelling

  • Conference paper
  • First Online:
  • 1820 Accesses

Abstract

The recent and rapid urbanization and frequent congestion of roads have led to more attention being focused on ballasted tracks for freight and commuter transport. The mechanisms of ballast degradation and deformation, the need for effective track confinement, understanding of interface behaviour, determining the dynamic bearing capacity of ballasted tracks require further insight to improve the existing design guidelines for future high speed commuter and heavier freight trains. The load-deformation behaviour of ballast under cyclic loads is measured in the laboratory using a novel large-scale Track Process Simulation Apparatus (TPSA). A novel coupling model based on discrete element method (DEM) and finite element method (FEM) is developed to predict the load-deformation responses of the ballast assembly considering the interaction of discrete ballast grains and continuum subgrade. In this coupled model, the discrete ballast grains are modelled by DEM and the subgrade domain is modelled as a continuum by FEM. The results indicate that significant settlements are observed during the initial load cycles, followed by gradually increased deformation, arriving at a steady value towards the end of tests. Contact force distributions, stress contours and corresponding broken bonds are captured.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Indraratna, B., Salim, W., Rujikiatkamjorn, C.: Advanced Rail Geotechnology - Ballasted Track. CRC Press, Taylor & Francis Group, London (2011)

    Google Scholar 

  2. Selig, E.T., Waters, J.M.: Track Geotechnology and Substructure Management. Thomas Telford, London (1994)

    Book  Google Scholar 

  3. Indraratna, B., Ngo, N.T., Rujikiatkamjorn, C.: Deformation of coal fouled ballast stabilized with geogrid under cyclic load. J. Geotech. Geoenviron. Eng. 139(8), 1275–1289 (2013)

    Article  Google Scholar 

  4. Indraratna, B., Ngo, N.T., Rujikiatkamjorn, C.: Behavior of geogrid-reinforced ballast under various levels of fouling. Geotext. Geomembr. 29(3), 313–322 (2011)

    Article  Google Scholar 

  5. Tennakoon, N., Indraratna, B., Rujikiatkamjorn, C., Nimbalkar, S., Neville, T.: The role of ballast-fouling characteristics on the drainage capacity of rail substructure. Geotech. Test. J. 35(4), 1–11 (2012)

    Article  Google Scholar 

  6. Rujikiatkamjorn, C., Indraratna, B., Ngo, N.T., Coop, M.: A laboratory study of railway ballast behaviour under various fouling degree. In: The 5th Asian Regional Conference on Geosynthetics, pp. 507–514 (2012)

    Google Scholar 

  7. Tutumluer, E., Dombrow, W., Huang, H.: Laboratory characterization of coal dust fouled ballast behaviour. In: AREMA 2008 Annual Conference and Exposition, Salt Lake City, UT, USA (2008)

    Google Scholar 

  8. Ngo, N.T., Indraratna, B., Rujikiatkamjorn, C.: Micromechanics-based investigation of fouled ballast using large-scale triaxial tests and discrete element modeling. J. Geotech. Geoenviron. Eng. 134(2), 04016089 (2017)

    Article  Google Scholar 

  9. Lackenby, J., Indraratna, B., McDowell, G.R., Christie, D.: Effect of confining pressure on ballast degradation and deformation under cyclic triaxial loading. Geotechnique 57(6), 527–536 (2007)

    Article  Google Scholar 

  10. McDowell, G.R., Lim, W.L., Collop, A.C., Armitage, R., Thom, N.H.: Comparison of ballast index tests for railway trackbeds. Geotech. Eng. 157(3), 151–161 (2008)

    Article  Google Scholar 

  11. Erol, T., Yuanjie, X.: Gradation and packing characteristics affecting stability of granular materials: aggregate imaging-based discrete element modeling approach. Int. J. Geomech. 17(3), 1–18 (2017). 04016064

    Google Scholar 

  12. Kaewunruen, S., Remennikov, A.M.: Dynamic properties of railway track and its components: a state-of-the-art review. In: Weiss, B.E. (ed.) New Research on Acoustics, pp. 197–220. Nova Science Publisher, Hauppauge (2008)

    Google Scholar 

  13. Powrie, W., Yang, L.A., Clayton, C.R.I.: Stress changes in the ground below ballasted railway track during train passage. Proc. Inst. Mech. Eng.: Part F: J. Rail Rapid Transit 221, 247–261 (2007)

    Article  Google Scholar 

  14. Bhandari, A., Han, J., Parsons, R.L.: Discrete element method investigation of geogrid-aggregate interaction under a cyclic wheel load. In: Geosynthetics Committee (AFS70) (2008)

    Google Scholar 

  15. Ngo, N.T., Indraratna, B., Rujikiatkamjorn, C.: A study of the geogrid-subballast interface via experimental evaluation and discrete element modelling. Granul. Matter 19(3), 54 (2017)

    Article  Google Scholar 

  16. McDowell, G.R., Harireche, O., Konietzky, H., Brown, S.F., Thom, N.H.: Discrete element modelling of geogrid-reinforced aggregates. Proc. ICE – Geotech. Eng. 159(1), 35–48 (2006)

    Article  Google Scholar 

  17. Indraratna, B., Hussaini, S.K.K., Vinod, J.S.: On the shear behaviour of ballast-geosynthetic interfaces. Geotech. Test. J. 35(2), 1–8 (2012)

    Google Scholar 

  18. Biabani, M.M., Indraratna, B.: An evaluation of the interface behaviour of rail subballast stabilised with geogrids and geomembranes. Geotext. Geomembr. 43(3), 240–249 (2015)

    Article  Google Scholar 

  19. Indraratna, B., Nimbalkar, S.S., Ngo, N.T., Neville, T.: Performance improvement of rail track substructure using artificial inclusions – experimental and numerical studies. Transp. Geotech. 8, 69–85 (2016)

    Article  Google Scholar 

  20. Biabani, M.M., Indraratna, B., Ngo, N.T.: Modelling of geocell-reinforced subballast subjected to cyclic loading. Geotext. Geomembr. 44(4), 489–503 (2016)

    Article  Google Scholar 

  21. AS.289.6.2.2: Methods of testing soils for engineering purposes. Method 6.2.2: Soil strength and consolidation tests-determination of the shear strength of a soil-direct shear test using a shear box. Australian Standard (1998)

    Google Scholar 

  22. Ngo, N.T., Indraratna, B., Rujikiatkamjorn, C.: Simulation ballasted track behavior: numerical treatment and field application. Int. J. Geomech. 17(6), 04016130 (2017)

    Article  Google Scholar 

  23. Indraratna, B., Lackenby, J., Christie, D.: Effect of confining pressure on the degradation of ballast under cyclic loading. Geotechnique 55(4), 325–328 (2005)

    Article  Google Scholar 

  24. Cundall, P.A., Strack, O.D.L.: A discrete numerical model for granular assemblies. Geotechnique 29(1), 47–65 (1979)

    Article  Google Scholar 

  25. Tutumluer, E., Huang, H., Bian, X.: Geogrid-aggregate interlock mechanism investigated through aggregate imaging-based discrete element modeling approach. Int. J. Geomech. 12, 391 (2012)

    Article  Google Scholar 

  26. Ngo, N.T., Indraratna, B., Rujikiatkamjorn, C.: DEM simulation of the behaviour of geogrid stabilised ballast fouled with coal. Comput. Geotech. 55, 224–231 (2014)

    Article  Google Scholar 

  27. McDowell, G.R., Bolton, M.D.: On the micromechanics of crushable aggregates. Geotechnique 48(5), 667–679 (1998)

    Article  Google Scholar 

  28. Han, J., Bhandari, A., Wang, F.: DEM analysis of stresses and deformations of geogrid-reinforced embankments over piles. Int. J. Geomech. 12(4), 340–350 (2011)

    Article  Google Scholar 

  29. Itasca: Particle flow code in three dimensions (PFC3D). Itasca Consulting Group, Inc., Minneapolis (2014)

    Google Scholar 

  30. Indraratna, B., Ngo, N.T., Rujikiatkamjorn, C., Sloan, S.W.: Coupled discrete element-finite difference method for analysing the load-deformation behaviour of a single stone column in soft soil. Comput. Geotech. 63, 267–278 (2015)

    Article  Google Scholar 

  31. Ngo, N., Indraratna, B., Rujikiatkamjorn, C., Biabani, M.: Experimental and discrete element modeling of geocell-stabilized subballast subjected to cyclic loading. J. Geotech. Geoenviron. Eng. 142, 0401510 (2016)

    Article  Google Scholar 

  32. Lobo-Guerrero, S., Vallejo, L.E.: Crushing a weak granular material: experimental numerical analyses. Geotechnique 55(3), 245–249 (2005)

    Article  Google Scholar 

  33. Maeda, K., Sakai, H., Kondo, A., Yamaguchi, T., Fukuma, M., Nukudani, E.: Stress-chain based micromechanics of sand with grain shape effect. Granul. Matter 12, 499–505 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

The Authors would like to acknowledge the Rail Manufacturing CRC, Australasian Centre for Rail Innovation (ACRI) Limited, and Tyre Stewardship Australia Limited (TSA) for providing the financial support needed to undertake this research (Project R2.5.1). The Authors are grateful to Mr. Alan Grant, Mr. Cameron Neilson, Mr Duncan Best and Mr. Ritchie McLean for their assistance in the laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ngoc Trung Ngo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ngo, N.T., Indraratna, B., Rujikiatkamjorn, C. (2018). Load-Deformation Responses of Ballasted Rail Tracks: Laboratory and Discrete-Continuum Modelling. In: Shi, X., Liu, Z., Liu, J. (eds) Proceedings of GeoShanghai 2018 International Conference: Transportation Geotechnics and Pavement Engineering. GSIC 2018. Springer, Singapore. https://doi.org/10.1007/978-981-13-0011-0_21

Download citation

Publish with us

Policies and ethics