Advertisement

LDA Based Discriminant Features for Texture Classification Using WT and PDE Approach

  • Rohini A. Bhusnurmath
  • P. S. Hiremath
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 801)

Abstract

Texture classification is an important aspect of image processing and computer vision applications. In this paper, discriminant features for texture classification using WT (wavelet transform) and PDE (partial differential equation) approach is presented. WT is used to obtain directional information of image. A PDE for anisotropic diffusion is used to extract texture component. Different statistical features are computed from texture component. The linear discriminant analysis (LDA) is used to boost the class separability. The discriminant features so obtained are robust class representatives. The robustness of proposed approach is experimented using three gray scale texture datasets: Oulu, Kylberg and VisTex. The k-NN classifier is used to evaluate the classification accuracy. The experimental results exhibit better performance as compared to the other methods in the literature in terms of computational efficiency.

Keywords

Discriminant texture features Texture classification PDE k-NN Image processing Wavelet transform 

Notes

Acknowledgments

The authors are grateful to the reviewers for their valuable comments and suggestions, which substantially improved the quality of the paper.

References

  1. 1.
    Hiremath, P.S., Shivashankar, S.: Wavelet based co-occurrence histogram features for texture classification with an application to script identification in a document image. Pattern Recogn. Lett. 29, 1182–1189 (2008)CrossRefGoogle Scholar
  2. 2.
    Hiremath, P.S., Bhusnurmath, R.A.: Texture image classification using nonsubsampled contourlet transform and local directional binary patterns. Int. J. Adv. Res. Comput. Sci. Softw. Eng. 3(7), 819–827 (2013)Google Scholar
  3. 3.
    Hiremath, P.S., Bhusnurmath, R.A.: Multiresolution LDBP descriptors for texture classification using anisotropic diffusion with an application to wood texture analysis. Pattern Recogn. Lett. 89, 8–17 (2017).  https://doi.org/10.1016/j.patrec.2017.01.015CrossRefGoogle Scholar
  4. 4.
    Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12(12), 629–639 (1990)CrossRefGoogle Scholar
  5. 5.
    Hiremath, P.S., Bhusnurmath, R.A.: RGB - based color texture image classification using anisotropic diffusion and LDBP. In: Murty, M.N., He, X., Chillarige, R.R., Weng, P. (eds.) MIWAI 2014. LNCS (LNAI), vol. 8875, pp. 101–111. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-13365-2_10Google Scholar
  6. 6.
    Bai, J., Miri, M.S., Liu, Y., Saha, P., Garvin, M., Wu, X.: Graph-based optimal multi-surface segmentation with a star-shaped prior: application to the segmentation of the optic disc and cup. In: IEEE International Symposium on Biomedical Imaging, pp. 525–528 (2014)Google Scholar
  7. 7.
    Hiremath, P.S., Bhusnurmath, R.A.: Diffusion approach for texture analysis based on LDBP. Int. J. Comput. Eng. Appl. Part I 9(7), 108–121 (2015)Google Scholar
  8. 8.
    Weszka, J.S., Dyer, C.R., Rosenfeld, A.: A comparative study of texture measures for terrain classification. IEEE Trans. Syst. Man Cybern. 6(4), 269–285 (1976)CrossRefzbMATHGoogle Scholar
  9. 9.
    Haralick, R.M., Shanmugam, K., Dinstein, I.: Textural features for image classification. IEEE Trans. Syst. Man Cybern. 3(6), 610–621 (1973)CrossRefGoogle Scholar
  10. 10.
    Amadasun, M., King, R.: Texural features corresponding to texural properties. IEEE Trans. Syst. Man Cybern. 19(5), 1264–1274 (1989)CrossRefGoogle Scholar
  11. 11.
    Wu, C.-M., Chen, Y.-C.: Statistical feature matrix for texture analysis. CVGIP: Graph. Models Image Process. 54(5), 407–419 (1992)Google Scholar
  12. 12.
    Laws, K.I.: Rapid texture identification. SPIE 238, 376–380 (1980)Google Scholar
  13. 13.
    Haralick, R.M., Shapiro, L.G.: Computer and Robot Vision, vol. 1. Addison-Wesley, Boston (1992)Google Scholar
  14. 14.
    Mandelbrot, B.B.: The Fractal Geometry of Nature. Freeman, San Francisco (1982)zbMATHGoogle Scholar
  15. 15.
    Rosenfeld, A., Weszka, J.: Picture recognition. In: Fu, K. (ed.) Digital Pattern Recognition, pp. 135–166. Springer, Berlin (1980).  https://doi.org/10.1007/978-3-642-67740-3_5CrossRefGoogle Scholar
  16. 16.
    Paci, M., Nanni, L., Lathi, A., Setala, A.K., Hyttinen, J., Severi, S.: Non binary coding for texture descriptors in sub-cellular and stem cell image classification. Curr. Bioinform. 8, 208–219 (2013).  https://doi.org/10.2174/1574893611308020009CrossRefGoogle Scholar
  17. 17.
    Hiremath, P.S., Bhusnurmath, R.A.: Colour texture classification using anisotropic diffusion and wavelet transform. In: Proceedings of the Seventh International Conference on Advances in Communication, Network, and Computing - CNC 2016, De Gruyter, pp. 44–61 (2016)Google Scholar
  18. 18.
    Hiremath, P.S., Bhusnurmath, R.A.: Performance analysis of anisotropic diffusion based colour texture descriptors in industrial applications. Int. J. Comput. Vis. Image Process. 7(2), 50–63 (2017).  https://doi.org/10.4018/IJCVIP.2017040104CrossRefGoogle Scholar
  19. 19.
    Daubechies, I.: Ten Lectures on Wavelets. SIAM, Philadelphia (1992)CrossRefzbMATHGoogle Scholar
  20. 20.
    Mallat, S.G.: A theory of multiresolution signal decomposition: the wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell. 11, 674–693 (1989)CrossRefzbMATHGoogle Scholar
  21. 21.
    Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. Wiley Publication, New York (2001)zbMATHGoogle Scholar
  22. 22.
    Ojala, T., Maenpaa, T., Pietikainen, M., Viertola, J., Kyllonen, J., Huovinen, S.: Outex - new framework for evaluation of texture analysis algorithms. In: Proceedings of International Conference on Pattern Recognition, pp. 701–706 (2002). http://www.outex.oulu.fi/
  23. 23.
    Kylberg, G.: Kylberg texture dataset v. 1.0 (2012). http://www.cb.uu.se/~gustaf/texture/
  24. 24.
  25. 25.
    Pan, Z., Fan, H., Li, Z.: Texture classification using local pattern based on vector quantization. IEEE Trans. Image Process. 24(12), 5379–5388 (2015)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Mehta, R., Egiazarian, K.: Texture classification using dense micro-block difference. IEEE Trans. Image Process. 25(4), 1604–1616 (2016)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Dash, J.K., Mukhopadhyay, S., Gupta, R.D.: Multiple classifier system using classification confidence for texture classification. Multimeda Tools Appl. 76(2), 2535–2556 (2017).  https://doi.org/10.1007/s11042-015-3231-zCrossRefGoogle Scholar
  28. 28.
    Liu, L., Fieguth, P., Guo, Y., Wang, X., Pietikäinen, M.: Local binary features for texture classification: taxonomy and experimental study. Pattern Recogn. 62, 135–160 (2017).  https://doi.org/10.1016/j.patcog.2016.08.032CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of Computer ScienceGovernment P.U. College for GirlsVijayapurIndia
  2. 2.Department of Computer Science (MCA)KLE Technological UniversityHubliIndia

Personalised recommendations