Skip to main content

Biofortification of Plant Nutrients: Present Scenario

  • Chapter
  • First Online:

Abstract

A huge portion of global population is facing nutrient deficiency; particularly peoples of developing countries are the foremost sufferers. Although much development has been made till now, the problem of malnutrition seems to be unsettled. Recent estimates suggested that this problem will become more pronounced in the upcoming years. Unfortunately all of our key edible crops are deficient of certain vital micronutrients and vitamins which are crucial for normal growth, such as milled cereal grains which are deprived of lysine, vitamin A, folic acid, iron, zinc and selenium. Several strategies are there to enhance the quality and quantity of edible crops; among them biofortification seems to be an emerging tool to solve this malnutrition problem by elevating the concentration of bioavailable vitamins and nutrients. Biofortification is a cost-effective technique as there is only single time investment in research; it improves nutritional status of those crops which lack sufficient quantity of nutrients and is sustainable also because seeds and proliferation materials can be stored for long time. This approach owns great promise in achieving improved nutritional status of peoples and should carry on to be explored. The main focus of present chapter is to give a broad outlook of causes and solutions for micronutrient malnutrition in the world and also to discuss the current information, developments and future potential of biofortification for improvement of major edible crops.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • ACC/SCN (2000) Fourth report on the world nutrition situation: nutrition throughout the life cycle. United Nations, Administrative Committee on Coordination/Sub-Committee on Nutrition, Geneva

    Google Scholar 

  • Alexander D, Ball MJ, Mann J (1994) Nutrient intake and haematological status of vegetarians and age-sex matched omnivores. Eur J Clin Nutr 48:538–546

    PubMed  CAS  Google Scholar 

  • Allaway WH (1986) Soil-plant-animal and human interrelationships in trace element nutrition. In: Mertz W (ed) Trace element in human and animal nutrition. Academic, New York, pp 465–488

    Chapter  Google Scholar 

  • Allen L, de Benoist B, Dary O, Hurrel R (eds) (2006) WHO/FAO: guidelines on food fortification with micronutrients. WHO/FAO, Geneva

    Google Scholar 

  • Ashraf M, Afzal M, Ahmad R, Maqsood MA, Shahzad SM, Aziz A, Akhtar N (2010) Silicon management for mitigating abiotic stress effects in plants. Plant Stress 4:104–114

    Google Scholar 

  • Botto LD, Moore CA, Knotty MJ, Erickson JD (1999) Medical progress: neural tube defects. N Engl J Med 20:1509–1519

    Article  Google Scholar 

  • Bouis HE, Graham RD, Welch RM (2000) The Consultative Group on International Agricultural Research (CGIAR) micronutrients project: justification and objectives. Food Nutr Bull 21:374–381

    Article  Google Scholar 

  • Brigelius-flohe R, Traber MG (1999) Vitamin E: function and metabolism. FASEB J 13:1145–1115

    Article  PubMed  CAS  Google Scholar 

  • Brinch Pedersen H, Hatzack F, Stoger E (2006) Heat stable phytases in transgenic wheat (Triticum aestivum L.): deposition pattern, thermostability, and phytate hydrolysis. J Agric Food Chem 54:4624–4632

    Article  PubMed  CAS  Google Scholar 

  • Cakmak I (2002) Plant nutrition research: priorities to meet human needs for food in sustainable ways. Plant Soil 247:3–24

    Article  CAS  Google Scholar 

  • Cakmak I (2008) Enrichment of cereal grains with zinc: agronomic or genetic biofortification? Plant Soil 302:1–17

    Article  CAS  Google Scholar 

  • Christou P, Twyman RM (2004) The potential of genetically enhanced plants to address food insecurity. Nutr Res Rev 17:23–42

    Article  PubMed  Google Scholar 

  • CIAT/IFPRI (2002) Biofortified crops for improved human nutrition: a challenge program proposal. International Center for Tropical Agriculture (CIAT) and International Food Policy Research Institute (IFPRI), Washington, DC

    Google Scholar 

  • Crockford SJ (2009) Evolutionary roots of iodine and thyroid hormones in cell-cell signaling. Integr Comp Biol 49:155–166

    Article  PubMed  CAS  Google Scholar 

  • Dang J, Arcot J, Shrestha A (2000) Folate retention in selected processed legumes. Food Chem 68:295–298

    Article  CAS  Google Scholar 

  • Dutta SS, Pattanayak A, Das S (2014) Bio fortification: enhancing nutrition in agricultural crops. Int J Sci Res 3:643–646

    Google Scholar 

  • Fernandez V, Winkelmann G, Ebert G (2004) Iron supply to tobacco plants through foliar application of Iron citrate and ferric dimerum acid. Physiol Plant 122:380–385

    Article  CAS  Google Scholar 

  • Finkelstein JL, Mehta S, Udipi SA, Ghugre PS, Luna SV, Wenger MJ, Murray-Kolb LE, Przybyszewski EM, Hass JD (2015) A randomized trial of iron-biofortified pearl millet in school children in India. J Nutr 145:1576–1581

    Article  PubMed  CAS  Google Scholar 

  • Food and Nutrition Board (2001) Dietary reference intakes for vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium and zinc. Institute of Medicine (US), panel on micronutrients. National Academies Press, Washington, DC

    Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  PubMed  CAS  Google Scholar 

  • Gomez-Galera S, Rojas E, Sudhakar D, Zhu C, Pelacho AM, Capell T, Christou P (2010) Critical evaluation of strategies for mineral fortification of staple food crops. Transgenic Res 19:165–180

    Article  PubMed  CAS  Google Scholar 

  • Graham RD (2003) Biofortification: a global challenge program. Int Rice Res Notes 28:4–8

    Google Scholar 

  • Graham RD, Welch RM, Saunders DA, Monasterio I, Bouis HE, Bonierbale M, De H, Burgos G, Thiele G, Liria R, Meisner CA, Beebe SE, Potts MJ, Kadiajn M, Hobbs PR, Gupta RK, Twomlow S (2007) Nutritious subsistence food systems. Adv Agron 92:1–74

    Article  CAS  Google Scholar 

  • Grusak MA, DellaPenna D (1999) Improving the nutrient composition of plants to enhance human nutrition and health. Ann Rev Plant Physiol Plant Mol Bio 50:133–161

    Article  CAS  Google Scholar 

  • Gupta N, Bajpai M, Majumdar R, Mishra P (2015) Response of iodine on antioxidant levels of Glycine max L. grown under Cd2+ stress. Adv Biol Res 9:40–48

    CAS  Google Scholar 

  • Hartikainen H (2005) Biogeochemistry of selenium and its impact on food chain quality and human health. J Trace Elem Med Biol 18:309–318

    Article  PubMed  CAS  Google Scholar 

  • Hasanuzzaman M, Hossain MA, Teixeira da Silva JA, Fujita M (2012) Plant responses and tolerance to abiotic oxidative stress: antioxidant defense is a key factor. In: Bandi V, Shanker AK, Shanker C, Mandapaka M (eds) Crop stress and its management: perspectives and strategies. Springer, Berlin, pp 261–316

    Chapter  Google Scholar 

  • Hasanuzzaman M, Mahmud JA, Nahar K, Inafuku M, Oku H, Fujita M (2017) Plant responses, adaptation and ROS metabolism in plants exposed to waterlogging stress. In: Khan MIR, Khan NA, Ismail AM (eds) Reactive oxygen species and antioxidant systems: role and regulation under abiotic stress. Springer, Singapore, pp 257–281

    Google Scholar 

  • Haskell MJ, Jamil KM, Hassan F, Peerson JM, Hossain MI, Fuchs GJ, Brown KH (2004) Daily consumption of Indian spinach (Basella alba) or sweet potatoes has a positive effect on total-body vitamin A stores in Bangladeshi men. Am J Clin Nutr 80:705–714

    Article  PubMed  CAS  Google Scholar 

  • Horton S (2006) The economics of food fortification. J Nutr 136:1068–1071

    Article  PubMed  CAS  Google Scholar 

  • Hotz C, Brown KH (2004) Assessment of the risk of zinc deficiency in populations and options for its control. Food Nutr Bull 25:94–204

    Google Scholar 

  • Hunt JM (2002) Reversing productivity losses from iron deficiency: the economic case. J Nutr 132:794–801

    Article  Google Scholar 

  • Jajda HM, Thakkar VR (2012) Control of Aspergillus niger infection in varieties of Arachis hypogeae L. by supplementation of zinc ions during seed germination. Arch Phytopathol Plant Prot 45:1464–1478

    Article  CAS  Google Scholar 

  • Jeong J, Guerinot ML (2008) Biofortified and bioavailable: the gold standard for plant-based diets. Proc Natl Acad Sci U S A 105:1777–1778

    Article  PubMed  PubMed Central  Google Scholar 

  • Johnson KL, Raybould AF, Hudson MD, Poppy GM (2007) How does scientific risk assessment of GM crops fit within the wider risk analysis? Trends Plant Sci 12:1–5

    Article  PubMed  CAS  Google Scholar 

  • Kendal DH (2009) Nutrient biofortification of food crops. Annl Rev Nutr 29:401–421

    Article  Google Scholar 

  • Kumari VV, Hoekenga O, Shalini K, Sarath Chandran MA (2014) Biofortification of food crops in India: an agricultural perspective. Asian Biotechnol Dev Rev 16:21–41

    Google Scholar 

  • Küpper FC, Feiters MC, Olofsson B, Kaiho T, Yanagida S, Zimmermann MB et al (2011) Commemorating two centuries of iodine research: an interdisciplinary overview of current research. Angew Chem Int Ed Engl 50:11598–11620

    Article  PubMed  CAS  Google Scholar 

  • L’abbe MR, Dumais L, Chao E, Junkins B (2008) Health claims on foods in Canada. J Nutr 138:1221S–1227S

    Article  PubMed  Google Scholar 

  • Leyva R, Sánchez-Rodríguez E, Ríos JJ, Rubio-Wilhelmi MM, Romero L, Ruiz JM et al (2011) Beneficial effects of exogenous iodine in lettuce plants subjected to salinity stress. Plant Sci 181:195–202

    Article  PubMed  CAS  Google Scholar 

  • Lyons GH, Lewis J, Lorimer MF (2004a) High-selenium wheat: agronomic biofortification strategies to improve human nutrition. Food Agri Env 2:171–178

    Google Scholar 

  • Lyons GH, Stangoulis JCR, Graham RD (2004b) Exploiting micronutrient interaction to optimize biofortification programs: the case for inclusion of selenium and iodine in the harvest plus programme. Nutr Rev 62:247–252

    Article  PubMed  Google Scholar 

  • Macias JM, Martinez PL, Morales SG, Maldonado AJ, Mendoza AB (2016) Use of iodine to biofortify and promote growth and stress tolerance in crops. Front Plant Sci 7:1146–1165

    Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic, London

    Google Scholar 

  • Mayer JE, Pfeiffer WF, Beyer P (2008) Biofortified crops to alleviate micronutrient malnutrition. Curr Opin Plant Biol 11:166–170

    Article  PubMed  CAS  Google Scholar 

  • Measham AR, Rao KD, Jamison DT, Wang J, Singh A (1999) The performance of India and Indian states in reducing infant mortality and fertility. Econ Political Wkly 34:1359–1367

    Google Scholar 

  • Mengel K, Kirkby EA, Kosegarten H, Appel T (2001) Principles of plant nutrition. Kluwer Academic, Dordrecht

    Book  Google Scholar 

  • Monasterio I, Graham RD (2000) Breeding for trace minerals in wheat. Food Nutr Bull 21:392–396

    Article  Google Scholar 

  • Nantel G, Tontisirin K (2002) Food-based strategies to meet the challenges of micronutrient malnutrition in the developing world. Proc Nutr Soc 61:243–250

    Article  PubMed  Google Scholar 

  • Nestel P, Bouis HE, Meenakshi JV, Pfeiffer W (2006) Biofortification of staple food crops. J Nutr 136:1064–1067

    Article  PubMed  CAS  Google Scholar 

  • Parker D, Kirkpatrick C, Theodorakopoulou CF (2008) Infrastructure regulation and poverty reduction in developing countries: a review of the evidence and a research agenda. Q Rev Econ Finance 48:177–188

    Article  Google Scholar 

  • Perry CL, McGuire MT, Neumark-Sztainerand D, Story M (2002) Adolescent vegetarians: how well do their dietary patterns meet the healthy people 2010 objectives? Arch Pediatr Adolesc Med 156:431–437

    Article  PubMed  Google Scholar 

  • Pfeiffer WH, McClafferty B (2007) HarvestPlus: breeding crops for better nutrition. Crop Sci 47:80–88

    Article  Google Scholar 

  • Pfeiffer WH, Trethowan RM, Ammar K, Sayre KD (2005) Increasing yield potential and yield stability in durum wheat. In: Royo C, Nachit MM, DiFonzo N, Araus JL, Pfeiffer WH, Slafer GA (eds) Durum wheat breeding current approaches and future strategies. Food Products Press, New York, pp 531–544

    Google Scholar 

  • Potrykus I (2003) Nutritionally enhanced rice to combat malnutrition disorders of the poor. Nutr Rev 61:S101–S104

    Article  PubMed  Google Scholar 

  • Powell K (2007) Functional foods from biotech: an unappetizing prospect? Nat Biotechnol 25:525–531

    Article  PubMed  CAS  Google Scholar 

  • Prasad AS (2007) Zinc: mechanisms of host defense. J Nutr 137:1345–1349

    Article  PubMed  CAS  Google Scholar 

  • Raboy V (2002) Progress in breeding low phytate crops. J Nutr 132:503S–505S

    Article  PubMed  Google Scholar 

  • Ramessar K, Capell T, Twyman RM, Quemada H, Christou P (2008) Calling the tunes on transgenic crops: the case for regulatory harmony. Mol Breed 23:99–112

    Article  Google Scholar 

  • Rengel Z, Batten GD, Crowley DE (1999) Agronomic approaches for improving the micronutrient density in edible portions of field crops. Field Crops Res 60:27–40

    Article  Google Scholar 

  • Rosado J, Hambidge KM, Miller L, Garcia O, Westcott J, Gonzalez K, Conde J, Hotz C, Pfeiffer W, Ortiz-Monasterio I, Krebs N (2009) The quantity of zinc absorbed from wheat in adult women is enhanced by biofortification. J Nutr 139:1920–1925

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Roughead ZK, Hunt JR (2000) Adaptation in iron absorption: iron supplementation reduces non-heme-iron but not heme-iron absorption from food. Am J Clin Nutr 72:982–989

    Article  CAS  PubMed  Google Scholar 

  • Ruel MIT, Bouis HE (1998) Plant breeding: a long-term strategy for the control of zinc deficiency in vulnerable populations. Am J Clin Nutr 68:488S–494S

    Article  CAS  PubMed  Google Scholar 

  • Rush D (2000) Nutrition and maternal mortality in the developing world. Am J Clin Nutr 72:212S–240S

    Article  PubMed  CAS  Google Scholar 

  • Shrimpton R, Schultink W (2002) Can supplements help meet the micronutrient needs of the developing world? Proc Nutr Soc 61:223–229

    Article  PubMed  CAS  Google Scholar 

  • Singh SS, Hazra KK, Praharaj CS, Singh U (2016) Biofortification: pathway ahead and future challenges. In: Singh U, Praharaj C, Singh S, Singh N (eds) Biofortification of food crops. Springer, New Delhi, pp 479–492

    Chapter  Google Scholar 

  • Sors TG, Ellis DR, Salt DE (2005) Selenium uptake, translocation, assimilation and metabolic fate in plants. Photosynthesis Res 86:373–389

    Article  CAS  Google Scholar 

  • Stein AJ, Meenakshi JV, Qaim M, Nestel P, Sachdev HP (2008) Potential impacts of iron biofortification in India. Soc Sci Med 66:1797–1808

    Article  PubMed  Google Scholar 

  • Stoltzfus RJ (2001) Defining iron-deficiency anaemia in public health terms: a time for reflection. J Nutr 131:565S–567S

    Article  PubMed  CAS  Google Scholar 

  • Theobald H (2005) Dietary calcium and health. Nutr Bull 30:237–227

    Article  Google Scholar 

  • UNICEF (2009) Statistics and monitoring. http://www.unicef.org/statistics/index_24183.html

  • Van Jaarsveld PJ, Faber M, Tanumihardjo SA, Nestel P, Lombard CJ, Benade AJ (2005) ß-carotene rich orange fleshed sweet potato improves the vitamin A status of primary school children assessed with the modified-relative-dose-response test. Am J Clin Nutr 81:1080–1087

    Article  PubMed  Google Scholar 

  • Vanderschuren H, Boycheva S, Li KT, Szydlowski N, Gruissem W, Fitzpatrick TB (2013) Strategies for vitamin B6 biofortification of plants: a dual role as a micronutrient and a stress protectant. Front Plant Sci 4:143–149

    Article  PubMed  PubMed Central  Google Scholar 

  • Venturi S (2011) Evolutionary significance of iodine. Curr Chem Biol 5:155–162

    CAS  Google Scholar 

  • Welch RM, Graham RD (1999) A new paradigm for world agriculture: meeting human needs-productive, sustainable, and nutritious. Field Crops Res 60:1–10

    Article  Google Scholar 

  • White P, Broadley MR (2005) Biofortifying crops with essential mineral elements. Trends Plant Sci 10:586–593

    Article  PubMed  CAS  Google Scholar 

  • WHO (2001) Macroeconomics and health: investing in health for economic development. Report of the commission on macroeconomics and health. WHO, Geneva

    Google Scholar 

  • WHO (2004) Iodine status worldwide: WHO global database on iodine deficiency. WHO, Geneva

    Google Scholar 

  • WHO (2007) World health report. WHO, Geneva

    Google Scholar 

  • WHO (2009) Weekly Iron-Folic Acid Supplementation (WIFS) in women of reproductive age: its role in promoting optimal maternal and child health. WHO, Geneva

    Google Scholar 

  • WHO/FAO (1998) Vitamin and mineral requirements in human nutrition. Report of a Joint FAO/WHO Expert Consultation. 2nd edition

    Google Scholar 

  • WHO/WFP/UNICEF (2007) Preventing and controlling micronutrient deficiencies in population affected by an emergency. Joint statement by the World Health Organization, the World Food Programme and the United Nations Children’s Fund

    Google Scholar 

  • Yassir I (2007) Growing goodness. Development 38:36–37

    Google Scholar 

  • Zhu C, Naqvi S, Gomez-Galera S, Pelacho AM, Capell T, Christou P (2007) Transgenic strategies for the nutritional enhancement of plants. Trends Plant Sci 12:548–555

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann R, Qaim M (2004) Potential health benefits of golden rice: a Philippine case study. Food Policy 29:147–168

    Article  Google Scholar 

Download references

Acknowledgement

The author Sonal Dixit is grateful to DSKPDF Cell, Pune, India, and University Grant Commission, New Delhi, India, for the award of the D.S. Kothari Postdoctoral Fellowship (F4-2/2006 (BSR)/BL/15-16/0156).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dixit, S., Shukla, R., Sharma, Y.K. (2018). Biofortification of Plant Nutrients: Present Scenario. In: Hasanuzzaman, M., Fujita, M., Oku, H., Nahar, K., Hawrylak-Nowak, B. (eds) Plant Nutrients and Abiotic Stress Tolerance. Springer, Singapore. https://doi.org/10.1007/978-981-10-9044-8_4

Download citation

Publish with us

Policies and ethics