Skip to main content

Role of Beneficial Trace Elements in Salt Stress Tolerance of Plants

  • Chapter
  • First Online:
Plant Nutrients and Abiotic Stress Tolerance

Abstract

A large proportion of the global cultivable land is inflicted with salt stress. Plants, especially crop species, are usually sensitive to high saline conditions. As a result, crops grown in saline areas succumb to premature wilting, leading to large-scale yield losses. Hence, there is an urgent requirement of an economic and easy technology to sustain crop development even in suboptimal conditions. Trace elements are micronutrients which are beneficial for plant growth and physiology at very low concentrations. Existing reports suggest that exogenous application of some of these trace elements ameliorates salt sensitivity in a species- and cultivar-dependent manner. Optimum concentrations of such micronutrients act as supplements for the system. Trace elements promote plant growth, photosynthetic efficiency, and water usage during salinity. The accumulation of the compatible solutes and the nonenzymatic components of the antioxidant machinery are triggered. The activities of the enzymes belonging to the antioxidant system are also enhanced in the presence of exogenous trace elements. Increased accumulation of toxic reactive oxygen species (ROS) is counteracted through their effective scavenging by means of several antioxidants. Some trace elements also stabilize the cell wall and promote systemic integrity under salt stress. This chapter exclusively discusses the beneficial effects of essential and quasi-essential trace elements like magnesium, zinc, iron, selenium, silicon, boron, and iodine in conferring plant tolerance against salt stress.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbas T, Balal RM, Shahid MA, Pervez MA, Ayyub CM, Aqueel MA, Javaid MM (2015) Silicon-induced alleviation of NaCl toxicity in okra (Abelmoschus esculentus) is associated with enhanced photosynthesis, osmoprotectants and antioxidant metabolism. Acta Physiol Plant 37:1–1

    Article  CAS  Google Scholar 

  • Abdalla MM (2011) Impact of diatomite nutrition on two Trifolium alexandrinum cultivars differing in salinity tolerance. Int J Plant Physiol Biochem 3:233–246

    CAS  Google Scholar 

  • Ali A, Basra SM, Hussain S, Iqbal J (2012) Increased growth and changes in wheat mineral composition through calcium silicate fertilization under normal and saline field conditions. Chil J Agric Res 72:98–103

    Article  Google Scholar 

  • Ali MAM, Ramezani A, Far SM, Sadat KA, Moradi-Ghahderijani M, Jamian SS (2013) Application of silicon ameliorates salinity stress in sunflower (Helianthus annuus L.) plants. Int J Agric Crop Sci 6:1367–1372

    CAS  Google Scholar 

  • Banerjee A, Roychoudhury A (2016) Group II late embryogenesis abundant (LEA) proteins: structural and functional aspects in plant abiotic stress. Plant Growth Regul 79:1–17

    Article  CAS  Google Scholar 

  • Banerjee A, Roychoudhury A (2017a) Abscisic-acid-dependent basic leucine zipper (bZIP) transcription factors in plant abiotic stress. Protoplasma 254:3–16

    Article  PubMed  CAS  Google Scholar 

  • Banerjee A, Roychoudhury A (2017b) Epigenetic regulation during salinity and drought stress in plants. Plant Gene 11:199–204

    Article  CAS  Google Scholar 

  • Banerjee A, Roychoudhury A (2017c) The gymnastics of epigenomics in rice. Plant Cell Rep. https://doi.org/10.1007/s00299-017-2192-2

  • Banerjee A, Wani SH, Roychoudhury A (2017) Epigenetic control of plant cold responses. Front Plant Sci 8:1643

    Article  PubMed  PubMed Central  Google Scholar 

  • Bybordi A (2014) Interactive effects of silicon and potassium nitrate in improving salt tolerance of wheat. Int J Agric 13:1889–1899

    Article  CAS  Google Scholar 

  • Chen D, Yin L, Deng X, Wang S (2014) Silicon increases salt tolerance by influencing the two-phase growth response to salinity in wheat (Triticum aestivum L.). Acta Physiol Plant 36:2531–2535

    Article  CAS  Google Scholar 

  • Dhillon KS, Dhillon SK (2003) Distribution and management of seleniferous soils. Adv Agron 79:119–185

    Article  CAS  Google Scholar 

  • Fahad S, Hussain S, Matloob A, Khan FA, Khaliq A, Saud S, Huang J (2015) Phytohormones and plant responses to salinity stress: a review. Plant Growth Regul 75:391–404

    Article  CAS  Google Scholar 

  • Farshidi M, Abdolzadeh A, Sadeghipour HR (2012) Silicon nutrition alleviates physiological disorders imposed by salinity in hydroponically grown canola (Brassica napus L.) plants. Acta Physiol Plant 34:1779–1788

    Article  CAS  Google Scholar 

  • Feng R, Wei C, Tu S (2013) The roles of selenium in protecting plants against abiotic stresses. Environ Exp Bot 87:58–68

    Article  CAS  Google Scholar 

  • Garg R, Chevala VVSN, Shankar R, Jain M (2015) Divergent DNA methylation patterns associated with gene expression in rice cultivars with contrasting drought and salinity stress response. Sci Rep 5:14922

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gurmani AR, Bano A, Najeeb U, Zhang J, Khan SU, Flowers TJ (2013a) Exogenously applied silicate and abscisic acid ameliorates the growth of salinity stressed wheat (Triticum aestivum L) seedlings through Na+ exclusion. Aust J Crop Sci 7:1123–1130

    Google Scholar 

  • Gurmani AR, Bano A, Ullah N, Khan H, Jahangir M, Flowers TJ (2013b) Exogenous abscisic acid (ABA) and silicon (Si) promote salinity tolerance by reducing sodium (Na+) transport and bypass flow in rice (Oryza sativa indica). Aust J Crop Sci 7:1219–1226

    Google Scholar 

  • Habibi G (2017) Selenium ameliorates salinity stress in Petroselinum crispum by modulation of photosynthesis and by reducing shoot Na accumulation. Russ J Plant Physiol 64:368

    Article  CAS  Google Scholar 

  • Habibi G, Norouzi F, Hajiboland R (2014) Silicon alleviates salt stress in pistachio plants. Prog Biol Sci 4:189–202

    Google Scholar 

  • Haghighi M, Afifipour Z, Mozafarian M (2012) The effect of N–Si on tomato seed germination under salinity levels. J Biol Environ Sci 6:87–90

    Google Scholar 

  • Hartikainen H (2005) Biogeochemistry of selenium and its impact on food chain quality and human health. J Trace Elem Med Biol 18:309–318

    Article  PubMed  CAS  Google Scholar 

  • Hasanuzzaman M, Hossain MA, Fujita M (2011) Selenium-induced up-regulation of the antioxidant defense and methylglyoxal detoxification system reduces salinity-induced damage in rapeseed seedlings. Biol Trace Elem Res 143:1704–1721

    Article  PubMed  CAS  Google Scholar 

  • Hasanuzzaman M, Hossain MA, Teixeira da Silva JA, Fujita M (2012) Plant responses and tolerance to abiotic oxidative stress: antioxidant defense is a key factor. In: Bandi V, Shanker AK, Shanker C, Mandapaka M (eds) Crop stress and its management: perspectives and strategies. Springer, Berlin, pp 261–316

    Chapter  Google Scholar 

  • Hasanuzzaman M, Nahar K, Fujita M (2013) Plant response to salt stress and role of exogenous protectants to mitigate salt-induced damages. In: Ahmed P, Azooz MM, Prasad MNV (eds) Ecophysiology and responses of plants under salt stress. Springer, New York, pp 25–87

    Chapter  Google Scholar 

  • Hasanuzzaman M, Alam MM, Nahar K, Jubayer-Al-Mahmud Ahamed KU, Fujita M (2014) Exogenous salicylic acid alleviates salt stress-induced oxidative damage in Brassica napus by enhancing the antioxidant defense and glyoxalase systems. Aust J Crop Sci 8:631–639

    CAS  Google Scholar 

  • Hashemi A, Abdolzadeh A, Sadeghipour HR (2010) Beneficial effects of silicon nutrition in alleviating salinity stress in hydroponically grown canola, Brassica napus L., plants. Soil Sci Plant Nutr 56:244–253

    Article  CAS  Google Scholar 

  • Hawrylak-Nowak B (2009) Beneficial effects of exogenous selenium in cucumber seedlings subjected to salt stress. Biol Trace Elem Res 132:259–269

    Article  PubMed  CAS  Google Scholar 

  • Hellal FA, Abdelhameid M, Abo-Basha DM, Zewainy RM (2012) Alleviation of the adverse effects of soil salinity stress by foliar application of silicon on faba bean (Vicia faba L.). J Appl Sci Res 8:4428–4433

    CAS  Google Scholar 

  • Hussein MM, Abou-Baker NH (2014) Growth and mineral status of moringa plants as affected by silicate and salicylic acid under salt stress. Int J Plant Soil Sci 3:163–177

    Article  Google Scholar 

  • Intergovernmental Panel on Climate Change (2007) http://www.ipcc.ch

  • Iqbal M, Aslam M (1999) Effect of Zn application on rice growth under saline condition. Int J Agric Biol 1:362–365

    Google Scholar 

  • Jan AU, Hadi F, Midrarullah, Nawaz MA, Rahman K (2017) Potassium and zinc increase tolerance to salt stress in wheat (Triticum aestivum L.). Plant Physiol Biochem 116:139–149

    Article  PubMed  CAS  Google Scholar 

  • Jiang C, Zu C, Lu D, Zheng Q, Shen J et al (2017) Effect of exogenous selenium supply on photosynthesis, Na+ accumulation and antioxidative capacity of maize (Zea mays L.) under salinity stress. Sci Rep 7:42039

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kafi M, Nabati J, Zare Mehrjerdi M (2011) Effect of salinity and silicon application on oxidative damage of sorghum [Sorghum bicolor (L.) Moench]. Pak J Bot 43:2457–2462

    CAS  Google Scholar 

  • Kardoni F, Mosavi SJS, Parande S, Torbaghan ME (2013) Effect of salinity stress and silicon application on yield and component yield of faba bean (Vicia faba). Int J Agric Crop Sci 6:814–818

    CAS  Google Scholar 

  • Kaur N, Sharma S, Kaur S, Nayyar H (2014) Selenium in agriculture: a nutrient or contaminant for crops? Arch Agron Soil Sci 60:1593–1624

    Article  CAS  Google Scholar 

  • Kaur S, Kaur N, Siddique KHM, Nayyar H (2016) Beneficial elements for agricultural crops and their functional relevance in defence against stresses. Arch Agron Soil Sci 62:905–920

    Article  Google Scholar 

  • Khoshgoftarmanesh AH, Khodarahmi S, Haghighi M (2014) Effect of silicon nutrition on lipid peroxidation and antioxidant response of cucumber plants exposed to salinity stress. Arch Agron Soil Sci 60:639–653

    Article  CAS  Google Scholar 

  • Kim YH, Khan AL, Waqas M, Shim JK, Kim DH, Lee KY, Lee IJ (2014) Silicon application to rice root zone influenced the phytohormonal and antioxidant responses under salinity stress. J Plant Growth Regul 33:137–149

    Article  CAS  Google Scholar 

  • Lee SK, Sohn EY, Hamayun M, Yoon JY, Lee IJ (2010) Effect of silicon on growth and salinity stress of soybean plant grown under hydroponic system. Agrofor Syst 80:333–340

    Article  Google Scholar 

  • Leyva R, Sánchez-Rodríguez E, Ríos JJ, Rubio-Wilhelmi MM, Romero L, Ruiz JM et al (2011) Beneficial effects of exogenous iodine in lettuce plants subjected to salinity stress. Plant Sci 181:195–202

    Article  PubMed  CAS  Google Scholar 

  • Li H, Zhu Y, Hu Y, Han W, Gong H (2015) Beneficial effects of silicon in alleviating salinity stress of tomato seedlings grown under sand culture. Acta Physiol Plant 37:1–9

    Article  CAS  Google Scholar 

  • Li Q, Yang A, Zhang W-H (2016) Efficient acquisition of iron confers greater tolerance to saline-alkaline stress in rice (Oryza sativa L.). J Exp Bot 67:6431–6444

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liang X, Wang H, Hu Y, Mao L, Sun L, Dong T, Nan W, Bi Y (2015) Silicon does not mitigate cell death in cultured tobacco BY-2 cells subjected to salinity without ethylene emission. Plant Cell Rep 34:331–343

    Article  PubMed  CAS  Google Scholar 

  • Liu P, Yin L, Wang S, Zhang M, Deng X, Zhang S, Tanaka K (2015) Enhanced root hydraulic conductance by aquaporin regulation accounts for silicon alleviated salt-induced osmotic stress in Sorghum bicolor L. Environ Exp Bot 111:42–51

    Article  CAS  Google Scholar 

  • Lobanov AV, Fomenko DE, Zhang Y, Sengupta A, Hatfield DL, Gladyshev VN (2007) Evolutionary dynamics of eukaryotic selenoproteomes: large selenoproteomes may associate with aquatic life and small with terrestrial life. Genome Biol 8:R198

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mateos-Naranjo E, Andrades-Moreno L, Davy AJ (2013) Silicon alleviate deleterious effects of high salinity on the halophytic grass Spartina densiflora. Plant Physiol Biochem 63:115–121

    Article  PubMed  CAS  Google Scholar 

  • Medrano-Macias J, Leija-Martinez P, Gonzalez-Morales S, Juarez-Maldonado A, Benavides-Mendoza A (2016) Use of iodine to biofortify and promote growth and stress tolerance in crops. Front Plant Sci 7:1146

    Article  PubMed  PubMed Central  Google Scholar 

  • Mehmood EUH, Kausar R, Akram M, Shahzad SM (2009) Is boron required to improve rice growth and yield in saline environment? Pak J Bot 41:1339–1350

    CAS  Google Scholar 

  • Mozafariyan M, Kamelmanesh MM, Hawrylak-Nowak B (2016) Ameliorative effect of selenium on tomato plants grown under salinity stress. Arch Agron Soil Sci 62:1368–1380

    Article  CAS  Google Scholar 

  • Muneer S, Park YG, Manivannan A, Soundararajan P, Jeong BR (2014) Physiological and proteomic analysis in chloroplasts of Solanum lycopersicum L. under silicon efficiency and salinity stress. Int J Mol Sci 15:21803–21824

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Muneer S, Jeong BR (2015) Proteomic analysis of salt-stress responsive proteins in roots of tomato (Lycopersicon esculentum L.) plants towards silicon efficiency. Plant Growth Regul 77:133–146

    Article  CAS  Google Scholar 

  • Nahar K, Hasanuzzaman M, Fujita M (2016) Roles of osmolytes in plant adaptation to drought and salinity. In: Iqbal N, Nazar R, Khan NA (eds) Osmolytes and plants acclimation to changing environment: emerging omics technologies. Springer, New Delhi, pp 37–58

    Chapter  Google Scholar 

  • Naim A (2014) Mitigation of salt stress in rice by exogenous application of selenium. M.S. thesis, Department of Agronomy, Sher-e-Bangla Agricultural University, Dhaka

    Google Scholar 

  • Parande S, Zamani GR, Zahan MHS, Ghader M (2013) Effects of silicon application on the yield and component of yield in the common bean (Phaseolus vulgaris) under salinity stress. Int J Agron Plant Prod 4:1574–1579

    CAS  Google Scholar 

  • Pandya DH, Mer RK, Prajith PK, Pandey AN (2004) Effect of salt stress and manganese supply on growth of barley seedlings. J Plant Nutr 27:1361–1379

    Article  CAS  Google Scholar 

  • Pilon-Smits EAH, Quinn CF, Tapken W, Malagoli M, Schiavon M (2009) Physiological functions of beneficial elements. Curr Opin Plant Biol 12:267–274

    Article  PubMed  CAS  Google Scholar 

  • Rahman A, Nahar K, Hasanuzzaman M, Fujita M (2016a) Calcium supplementation improves Na+/K+ ratio, antioxidant defense and glyoxalase systems in salt-stressed rice seedlings. Front Plant Sci 7:609

    PubMed  PubMed Central  Google Scholar 

  • Rahman A, Mostofa MG, Nahar K, Hasanuzzaman M, Fujita M (2016b) Exogenous calcium alleviates cadmium-induced oxidative stress in rice (Oryza sativa L.) seedlings by regulating the antioxidant defense and glyoxalase systems. Braz J Bot 39:393–407

    Article  Google Scholar 

  • Rahman A, Hossain MS, Mahmud J-A, Nahar K, Hasanuzzaman M, Fujita M (2016c) Manganese-induced salt stress tolerance in rice seedlings: regulation of ion homeostasis, antioxidant defense and glyoxalase systems. Physiol Mol Biol Plants 22:291–306

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Redondo-Gomez S, Andrades-Moreno L, Mateos-Naranjo E, Parra R et al (2011) Synergic effect of salinity and zinc stress on growth and photosynthetic responses of the cordgrass, Spartina densiflora. J Exp Bot 62:5521–5530

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rizwan M, Ali S, Ibrahim M, Farid M, Adrees M et al (2015) Mechanisms of silicon-mediated alleviation of drought and salt stress in plants: a review. Environ Sci Pollut Res 22:15416–15431

    Article  CAS  Google Scholar 

  • Roychoudhury A, Banerjee A (2015) Trancriptome analysis of abiotic stress response in plants. Transcriptomics 3:2

    Article  Google Scholar 

  • Roychoudhury A, Banerjee A (2016) Endogenous glycine betaine accumulation mediates abiotic stress tolerance in plants. Trop Plant Res 3:105–111

    Google Scholar 

  • Roychoudhury A, Banerjee A, Lahiri V (2015) Metabolic and molecular-genetic regulation of proline signaling and its cross-talk with major effectors mediates abiotic stress tolerance in plants. Turk J Bot 39:887–910

    Article  CAS  Google Scholar 

  • Sebastian A, Prasad MN (2015) Iron- and manganese-assisted cadmium tolerance in Oryza sativa L.: lowering of rhizotoxicity next to functional photosynthesis. Planta 241:1519–1528

    Article  PubMed  CAS  Google Scholar 

  • Shahid MA, Balal RM, Pervez MA, Abbas T, Aqeel MA, Javaid MM, Garcia-sanchez F (2015) Foliar spray of phyto-extracts supplemented with silicon: an efficacious strategy to alleviate the salinity induced deleterious effects in pea (Pisum sativum L.). Turk J Bot 39:408–419

    Article  CAS  Google Scholar 

  • Shekari F, Abbasi A, Mustafavi SH (2015) Effect of silicon and selenium on enzymatic changes and productivity of dill in saline condition. J Saudi Soc Agric Sci. https://doi.org/10.1016/j.jssas.2015.11.006

  • Terry N, Zayed AM, De Souza MP, Tarun AS (2000) Selenium in higher plants. Ann Rev Plant Physiol Plant Mol Biol 51:401–432

    Article  CAS  Google Scholar 

  • UNESCO Water Portal (2007) http://www.unesco.org/water

  • Wang XD, Ou-yang C, Fan ZR, Gao S, Chen F, Tang L (2010) Effects of exogenous silicon on seed germination and antioxidant enzyme activities of Momordica charantia under salt stress. J Anim Plant Sci 6:700–708

    Google Scholar 

  • Wang X, Wei Z, Liu D, Zhao G (2011) Effects of NaCl and silicon on activities of antioxidative enzymes in roots, shoots and leaves of alfalfa. Afr J Biotechnol 10:545–549

    CAS  Google Scholar 

  • Wang S, Liu P, Chen D, Yin L, Li H, Deng X (2015) Silicon enhanced salt tolerance by improving the root water uptake and decreasing the ion toxicity in cucumber. Front Plant Sci 6:759

    PubMed  PubMed Central  Google Scholar 

  • Watanabe T, Broadley MR, Jansen S, White PJ, Takada J et al (2007) Evolutionary control of leaf element composition in plants. New Phytol 174:516–523

    Article  PubMed  CAS  Google Scholar 

  • Xie Z, Song R, Shao H, Song F, Xu H, Lu Y (2015) Silicon improves maize photosynthesis in saline-alkaline soils. Sci World J Article ID 245072

    Google Scholar 

  • Xu CX, Ma YP, Liu YL (2015) Effects of silicon (Si) on growth, quality and ionic homeostasis of aloe under salt stress. S Afr J Bot 98:26–36

    Article  CAS  Google Scholar 

  • Yasmeen F, Raja NI, Razzaq A, Komatsu S (2016) Gel-free/label-free proteomic analysis of wheat shoot in stress tolerant varieties under iron nanoparticles exposure. Biochim Biophys Acta 1864:1586–1598

    Article  PubMed  CAS  Google Scholar 

  • Yin L, Wang S, Tanaka K, Fujihara S, Itai A, Den X, Zhang S (2016) Silicon-mediated changes in polyamines participate in silicon-induced salt tolerance in Sorghum bicolor L. Plant Cell Environ 39:245–258

    Article  PubMed  CAS  Google Scholar 

  • Zhu YX, Xu XB, Hu YH, Han WH, Yin JL et al (2015) Silicon improves salt tolerance by increasing root water uptake in Cucumis sativus L. Plant Cell Rep 34:1629–1646

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Banerjee, A., Roychoudhury, A. (2018). Role of Beneficial Trace Elements in Salt Stress Tolerance of Plants. In: Hasanuzzaman, M., Fujita, M., Oku, H., Nahar, K., Hawrylak-Nowak, B. (eds) Plant Nutrients and Abiotic Stress Tolerance. Springer, Singapore. https://doi.org/10.1007/978-981-10-9044-8_16

Download citation

Publish with us

Policies and ethics