Skip to main content

Mechanisms of Selenium-Induced Enhancement of Abiotic Stress Tolerance in Plants

  • Chapter
  • First Online:

Abstract

Selenium (Se), an essential micronutrient for humans, animals, and some microorganisms, has been found to be a beneficial trace element for many plant species, especially Se hyperaccumulators. Selenium accumulation in plants profoundly affects many biochemical reactions in cells. There is a growing interest in understanding the plant reaction to Se enrichment, both to ensure adequate dietary Se intakes for humans and animals, which often needs Se biofortification using edible crops, and to achieve increased tolerance of plants to some environmental stress. In recent years, many investigations have shown that Se-enriched plants exhibited enhanced tolerance to some abiotic stresses, e.g. cold, high temperature, drought, salinity, UV radiation, and excess of some trace metals/metalloids. In plants exposed to environmental stresses, the protective role of Se ions, used in relatively low concentrations, has often been attributed to stimulation of antioxidative protection systems, but the associated mechanisms are complicated and not fully elucidated. To obtain positive effects of Se phytofortification, the possibility of accumulation of this element in given plant species, the chemical form of Se applied, the way of the application thereof, as well as the probability of its interaction with other elements should be taken under consideration. In this chapter, we will focus on reviewing the effects of Se biofortification on plants growing under different abiotic stress conditions. Changes in the physiological and biochemical characteristics of Se-supplied plants, with particular emphasis on the influence of Se on the changes in enzymatic and non-enzymatic antioxidant defence mechanisms under abiotic stress, will be summarised in this review.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aslam R, Bostan N, Nabgha-e-Amen MM, Safdar W (2011) A critical review on halophytes: salt tolerant plants. J Med Plants Res 5:7108–7118

    CAS  Google Scholar 

  • Balakhnina TI, Nadezhkina ES (2017) Effect of selenium on growth and antioxidant capacity of Triticum aestivum L. during development of lead-induced oxidative stress. Rus J Plant Physiol 64:215–223

    Article  CAS  Google Scholar 

  • Balal RM, Shahid MA, Javaid MM, Iqbal Z, Anjum MA, Garcia-Sanchez F, Mattson NS (2016) The role of selenium in amelioration of heat-induced oxidative damage in cucumber under high temperature stress. Acta Physiol Plant 38:158

    Article  CAS  Google Scholar 

  • Bian ZW, Chen J, Li H, Liu DD, Yang LF, Zhu YL, Zhu WL, Liu W, Ying ZZ (2016) The phytotoxic effects of selenium-mercury interactions on root growth in Brassica rapa (LvLing). Hortic Environ Biotechnol 57:232–240

    Article  CAS  Google Scholar 

  • Bluemlein K, Klimm E, Raab A, Feldmann J (2009) Selenite enhances arsenate toxicity in Thunbergia alata. Environ Chem 6:486–494

    Article  CAS  Google Scholar 

  • Breznik B, Germ M, Gaberscik A, Kreft I (2005) Combined effects of elevated UV-B radiation and the addition of selenium on common (Fagopyrum esculentum Moench) and tartary [Fagopyrum tataricum (L.) Gaertn.] buckwheat. Photosynthetica 43:583–589

    Article  CAS  Google Scholar 

  • Cartes P, Jara AA, Pinilla L, Rosas A, Mora ML (2010) Selenium improves the antioxidant ability against aluminium-induced oxidative stress in ryegrass roots. Ann Appl Biol 156:297–307

    Article  CAS  Google Scholar 

  • Chauhan R, Awasthi S, Tripathi P, Mishra S, Dwivedi S, Niranjan A, Mallick S, Tripathi P, Pande V, Tripathi RD (2017) Selenite modulates the level of phenolics and nutrient element to alleviate the toxicity of arsenite in rice (Oryza sativa L.) Ecotoxicol Environ Saf 138:47–55

    Article  PubMed  CAS  Google Scholar 

  • Chen CC, Sung JM (2001) Priming bitter gourd seeds with selenium solution enhances germinability and antioxidative responses under sub-optimal temperature. Physiol Plant 111:9–16

    Article  CAS  Google Scholar 

  • Chu J, Yao X, Zhang Z (2010) Responses of wheat seedlings to exogenous selenium supply under cold stress. Biol Trace Elem Res 136:355–363

    Article  PubMed  CAS  Google Scholar 

  • Cuderman P, Kreft I, Germ M, Kovačevič M, Stibilj V (2008) Selenium species in selenium-enriched and drought-exposed potatoes. J Agric Food Chem 56:9114–9120

    Article  PubMed  CAS  Google Scholar 

  • Diao M, Ma L, Wang J, Cui J, Fu A, Liu H (2014) Selenium promotes the growth and photosynthesis of tomato seedlings under salt stress by enhancing chloroplast antioxidant defense system. J Plant Growth Reg 33:671–682

    Article  CAS  Google Scholar 

  • Djanaguiraman M, Prasad PVV, Sëppanen M (2010) Selenium protects sorghum leaves from oxidative damage under high temperature stress by enhancing antioxidant defense system. Plant Physiol Biochem 48:999–1007

    Article  PubMed  CAS  Google Scholar 

  • Dresler S, Maksymiec W (2013) Capillary zone electrophoresis for determination of reduced and oxidized ascorbate and glutathione in roots and leaf segments of Zea mays plants exposed to Cd and Cu. Acta Sci Pol, Hortorum Cultus 12:143–155

    Google Scholar 

  • Dziubinska H, Filek M, Krol E, Trebacz K (2010) Cadmium and selenium modulate slow vacuolar channels in rape (Brassica napus) vacuoles. J Plant Physiol 167:1566–1570

    Article  PubMed  CAS  Google Scholar 

  • El-Ramady H, Abdalla N, Taha HS, Alshaal T, El-Henawy A, Faizy SEDA, Shams MS, Youssef SM, Shalaby T, Bayoumi Y, Elhawat N, Shehata S, Sztrik A, Prokisch J, Fári M, Domokos-Szabolcsy É, Pilon-Smits EA, Selmar D, Haneklaus S, Schnug E (2016) Selenium and nano-selenium in plant nutrition. Environ Chem Lett 14:123–147

    Article  CAS  Google Scholar 

  • Emam MM, Khattab HE, Helal NM, Deraz AE (2014) Effect of selenium and silicon on yield quality of rice plant grown under drought stress. Aust J Crop Sci 8:596–605

    Google Scholar 

  • Fargašová A, Pastierová J, Svetková K (2006) Effect of Se-metal pair combinations (Cd, Zn, Cu, Pb) on photosynthetic pigments production and metal accumulation in Sinapis alba L. seedlings. Plant Soil Environ 52:8–15

    Article  Google Scholar 

  • Farooq M, Wahid A, Kobayashi N, Fujita D, Basra SMA (2009) Plant drought stress: effects, mechanisms and management. Agron Sustain Dev 29:185–212

    Article  Google Scholar 

  • Feng R, Wei C, Tu S (2013) The roles of selenium in protecting plants against abiotic stresses. Environ Exp Bot 87:58–68

    Article  CAS  Google Scholar 

  • Filek M, Keskinen R, Hartikainen H, Szarejko I, Janiak A, Miszalski Z, Golda A (2008) The protective role of selenium in rape seedlings subjected to cadmium stress. J Plant Physiol 165:833–844

    Article  PubMed  CAS  Google Scholar 

  • Filek M, Zembala M, Hartikainen H, Miszalski Z, Kornaś A, Wietecka-Posłuszny R, Walas P (2009) Changes in wheat plastid membrane properties induced by cadmium and selenium in presence/absence of 2,4-dichlorophenoxyacetic acid. Plant Cell Tissue Organ Cult 96:19–28

    Article  CAS  Google Scholar 

  • Filek M, Gzyl-Malcher B, Zembala M, Bednarska E, Laggner P, Kriechbaum M (2010a) Effect of selenium on characteristics of rape chloroplasts modified by cadmium. J Plant Physiol 167:28–33

    Article  PubMed  CAS  Google Scholar 

  • Filek M, Kościelniak J, Łabanowska M, Bednarska E, Bidzińska E (2010b) Selenium-induced protection of photosynthesis activity in rape (Brassica napus) seedlings subjected to cadmium stress. Fluorescence and EPR measurements. Photosynth Res 105:27–37

    Article  PubMed  CAS  Google Scholar 

  • Germ M (2008) The response of two potato cultivars on combined effects of selenium and drought. Acta Agric Slov 91:121–137

    Article  CAS  Google Scholar 

  • Germ M, Kreft I, Osvald J (2005) Influence of UV-B exclusion and selenium treatment on photochemical efficiency of photosystem II, yield and respiratory potential in pumpkins (Cucurbita pepo L.) Plant Physiol Biochem 43:445–448

    Article  PubMed  CAS  Google Scholar 

  • Germ M, Kreft I, Gaberščik A (2009) UV-B radiation and selenium affected energy availability in green alga Zygnema. Biologia 64:676–679

    Article  CAS  Google Scholar 

  • Golob A, Kavčič J, Stibilj V, Gaberščik A, Vogel-Mikuš K, Germ M (2017a) The effect of selenium and UV radiation on leaf traits and biomass production in Triticum aestivum L. Ecotoxicol Environ Saf 136:142–149

    Article  PubMed  CAS  Google Scholar 

  • Golob A, Stibilj V, Kreft I, Vogel-Mikuš K, Gaberščik A, Germ M (2017b) Selenium treatment alters the effects of UV radiation on chemical and production parameters in hybrid buckwheat. Acta Agric Scand Sect B Soil Plant Sci (in press) https://doi.org/10.1080/09064710.2017.1349172

  • Gupta NK, Agarwal S, Agarwal VP, Nathawat NS, Gupta S, Singh G (2013) Effect of short-term heat stress on growth, physiology and antioxidative defence system in wheat seedlings. Acta Physiol Plant 35:1837–1842

    Article  CAS  Google Scholar 

  • Gupta M, Gupta S (2017) An overview of selenium uptake, metabolism, and toxicity in plants. Front Plant Sci 7:2074

    Article  PubMed  PubMed Central  Google Scholar 

  • Habibi G (2013) Effect of drought stress and selenium spraying on photosynthesis and antioxidant activity of spring barley. Acta Agric Slov 101:31–39

    Article  CAS  Google Scholar 

  • Haghighi M, Abolghasemi R, Teixeira da Silva JA (2014) Low and high temperature stress affect the growth characteristics of tomato in hydroponic culture with Se and nano-Se amendment. Sci Hort 178:231–240

    Article  CAS  Google Scholar 

  • Hamilton SJ (2004) Review of selenium toxicity in the aquatic food chain. Sci Total Environ 326:1–31

    Article  PubMed  CAS  Google Scholar 

  • Hartikainen H, Xue T (1999) The promotive effect of selenium on plant growth as triggered by ultraviolet irradiation. J Environ Qual 28:1372–1375

    Article  CAS  Google Scholar 

  • Hasanuzzaman M, Fujita M (2011) Selenium pretreatment upregulates the antioxidant defense and methylglyoxal detoxification system and confers enhanced tolerance to drought stress in rapeseed seedlings. Biol Trace Elem Res 143:1758–1776

    Article  PubMed  CAS  Google Scholar 

  • Hasanuzzaman M, Fujita M (2012) Heavy metals in the environment: current status, toxic effects on plants and phytoremediation. In: Anjum NA, Pereira ME, Ahmad I, Duarte AC, Umar S, Khan NA (eds) Phytotechnolgies: remediation of environmental contamintants. CRC Press, Boca Raton, pp 7–73

    Chapter  Google Scholar 

  • Hasanuzzaman M, Hossain MA, Fujita M (2010) Selenium in higher plants: physiological role, antioxidant metabolizm and abiotic stress tolerance. J Plant Sci 5:354–375

    Article  CAS  Google Scholar 

  • Hasanuzzaman M, Hossain MA, Fujita M (2011) Selenium-induced up-regulation of the antioxidant defense and methylglyoxal detoxification system reduces salinity-induced damage in rapeseed seedlings. Biol Trace Elem Res 143:1704–1721

    Article  PubMed  CAS  Google Scholar 

  • Hasanuzzaman M, Hossain MA, Fujita M (2012) Exogenous selenium pretreatment protects rapeseed seedlings from cadmium-induced oxidative stress by upregulating the antioxidant defense and methylglyoxal detoxification systems. Biol Trace Elem Res 149:248–261

    Article  PubMed  CAS  Google Scholar 

  • Hasanuzzaman M, Nahar K, Alam MM, Fujita M (2014) Modulation of antioxidant machinery and the methylglyoxal detoxification system in selenium-supplemented Brassica napus seedlings confers tolerance to high temperature stress. Biol Trace Elem Res 161:297–307

    Article  PubMed  CAS  Google Scholar 

  • Hashem HA, Hassanein RA, Bekheta MA, El-Kady FA (2013) Protective role of selenium in canola (Brassica napus L.) plant subjected to salt stress. Egypt J Exp Biol (Bot) 9:199–211

    Google Scholar 

  • Hawrylak-Nowak B (2009) Beneficial effects of exogenous selenium in cucumber seedlings subjected to salt stress. Biol Trace Elem Res 132:259–269

    Article  PubMed  CAS  Google Scholar 

  • Hawrylak-Nowak B (2015) Selenite is more efficient than selenate in alleviation of salt stress in lettuce plants. Acta Biol Cracov Ser Bot 57:49–54

    CAS  Google Scholar 

  • Hawrylak-Nowak B, Matraszek R, Szymańska M (2010) Selenium modifies the effect of short-term chilling stress on cucumber plants. Biol Trace Elem Res 138:307–315

    Article  PubMed  CAS  Google Scholar 

  • Hawrylak-Nowak B, Dresler S, Wójcik M (2014) Selenium affects physiological parameters and phytochelatins accumulation in cucumber (Cucumis sativus L.) plants grown under cadmium exposure. Sci Hort 172:10–18

    Article  CAS  Google Scholar 

  • Hawrylak-Nowak B, Matraszek R, Pogorzelec M (2015) The dual effects of two inorganic selenium forms on the growth, selected physiological parameters and macronutrients accumulation in cucumber plants. Acta Physiol Plant 37:41

    Article  CAS  Google Scholar 

  • Heijari J, Kivimäenpää M, Hartikainen H, Julkunen-Tiitto R, Wulff A (2006) Responses of strawberry (Fragaria×ananassa) to supplemental UV-B radiation and selenium under field conditions. Plant Soil 282:27–39

    Article  CAS  Google Scholar 

  • Hu Y, Norton GJ, Duan G, Huang Y, Liu Y (2014) Effect of selenium fertilization on the accumulation of cadmium and lead in rice plants. Plant Soil 384:131–140

    Article  CAS  Google Scholar 

  • Ibrahim HM (2014) Selenium pretreatment regulates the antioxidant defence system and reduces oxidative stress on drought-stressed wheat (Triticum aestivum L.) plants. Asian J Plant Sci 13:120–128

    Article  CAS  Google Scholar 

  • Iqbal M, Hussain I, Liaqat H, Ashraf MA, Rasheed R, Rehman AU (2015) Exogenously applied selenium reduces oxidative stress and induces heat tolerance in spring wheat. Plant Physiol Biochem 94:95–103

    Article  PubMed  CAS  Google Scholar 

  • Jajoo A, Allakhverdiev SI (2017) High-temperature stress in plants: consequences and strategies for protecting photosynthetic machinery. In: Shabala S (ed) Plant stress physiology, 2nd edn. CAB International, Oxfordshire, pp 138–154

    Google Scholar 

  • Jansen MAK (2017) Ultrafiolet-B radiation: stressor and regulatory signal. In: Shabala S (ed) Plant stress physiology, 2nd edn. CAB International, Oxfordshire, pp 253–278

    Chapter  Google Scholar 

  • Jiang C, Zu C, Lu D, Zheng Q, Shen J, Wang H, Li D (2017) Effect of exogenous selenium supply on photosynthesis, Na+ accumulation and antioxidative capacity of maize (Zea mays L.) under salinity stress. Sci Rep 7:42039

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kaur G, Kumar S, Thakur P, Malik JA, Bhandhari K, Sharma KD, Nayyar H (2011) Involvement of proline in response of chickpea (Cicer arietinum L.) to chilling stress at reproductive stage. Sci Hort 128:174–181

    Article  CAS  Google Scholar 

  • KeLing H, Ling Z, JiTao W, Yang Y (2013) Influence of selenium on growth, lipid peroxidation and antioxidative enzyme activity in melon (Cucumis melo L.) seedlings under salt stress. Acta Soc Bot Pol 82:193–197

    Article  CAS  Google Scholar 

  • Kishor PBK, Sangam S, Amrutha RN, Laxmi PS, Naidu KR, Rao K, Rao S, Reddy KJ, Theriappan P, Sreenivasulu N (2005) Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: its implications in plant growth and abiotic stress tolerance. Curr Sci 88:424–438

    CAS  Google Scholar 

  • Kong L, Wang M, Bi D (2005) Selenium modulates the activities of antioxidant enzymes, osmotic homeostasis and promotes the growth of sorrel seedlings under salt stress. Plant Growth Reg 45:155–163

    Article  CAS  Google Scholar 

  • Kopsell DA, Kopsell DE (2007) Selenium. In: Barker AV, Pilbeam D (eds) Handbook of plant nutrition. CRC Press, Taylor & Francis Group, Boca Raton, pp 515–550

    Google Scholar 

  • Kostopoulou P, Kyriazopoulos AP, Abraham EM, Parissi ZM, Karatassiou M, Barbayannis N (2015) Synergistic effect of selenium addition and water stress on Melilotus officinalis L. mineral content. Not Bot Horti Agrobot 43:447–454

    CAS  Google Scholar 

  • Kumar SG, Reddy AM, Sudhakar C (2003) NaCl effects on proline metabolism in two high yielding genotypes of mulberry (Morus alba L.) with contrasting salt tolerance. Plant Sci 165:1245–1251

    Article  CAS  Google Scholar 

  • Kuznetsov VV, Kholodova VP, Kuznetsov VV, Yagodin BA (2003) Selenium regulates the water status of plants exposed to drought. Dokl Biol Sci 390:266–268

    Article  PubMed  CAS  Google Scholar 

  • Łabanowska M, Bidzińska E, Filek M (2010) Influence of cadmium and selenium on photosynthesis activity of rape and wheat plants studied by EPR. Curr Top Biophys 33:141–146

    Google Scholar 

  • Landberg T, Maria Greger M (1994) Influence of selenium on uptake and toxicity of copper and cadmium in pea (Pisum sativum) and wheat (Triticum aestivum). Physiol Plant 90:637–644

    Article  CAS  Google Scholar 

  • Lenz M, Lens PNL (2009) The essential toxin: the changing perception of selenium in environmental sciences. Sci Total Environ 407:3620–3633

    Article  PubMed  CAS  Google Scholar 

  • Lin L, Zhou W, Dai H, Cao F, Zhang G, Wu F (2012) Selenium reduces cadmium uptake and mitigates cadmium toxicity in rice. J Hazard Mater 235-236:343–351

    Article  PubMed  CAS  Google Scholar 

  • Lynch JP (2007) Roots of the second green revolution. Austr J Bot 55:493–512

    Article  Google Scholar 

  • Malagoli M, Schiavon M, Dall’Acqua S, Pilon-Smits EAH (2015) Effects of selenium biofortification on crop nutritional quality. Front Plant Sci 6:280

    Article  PubMed  PubMed Central  Google Scholar 

  • Masarovičová E, Kráľová K (2012) Plant-heavy metal interaction: phytoremediation, biofortification and nanoparticles. In: Montanaro G, Dichio B (eds) Advances in selected plant physiology aspects. InTech, Rijeka, pp 75–102

    Google Scholar 

  • Mechora Š, Ugrinović K (2015) Can plant – herbivore interaction be affected by selenium? Austin J Environ Toxicol 1:5

    Google Scholar 

  • Mozafariyan M, Shekari L, Hawrylak-Nowak B, Kamelmanesh MM (2014) Protective role of selenium on pepper exposed to cadmium stress during reproductive stage. Biol Trace Elem Res 160:97–107

    Article  PubMed  CAS  Google Scholar 

  • Mozafariyan M, Kamelmanesh MM, Hawrylak-Nowak B (2016) Ameliorative effect of selenium on tomato plants grown under salinity stress. Arch Agron Soil Sci 62:1368–1380

    Article  CAS  Google Scholar 

  • Mroczek-Zdyrska M, Wójcik M (2012) The influence of selenium on root growth and oxidative stress induced by lead in Vicia faba L. minor plants. Biol Trace Elem Res 147:320–328

    Article  PubMed  CAS  Google Scholar 

  • Mroczek-Zdyrska M, Strubińska J, Hanaka A (2017) Selenium improves physiological parameters and alleviates oxidative stress in shoots of lead-exposed Vicia faba L. minor plants grown under phosphorus-deficient conditions. J Plant Growth Regul 36:186–199

    Article  CAS  Google Scholar 

  • Nawaz F, Ashraf MY, Ahmad R, Waraich EA (2013) Selenium (Se) seed priming induced growth and biochemical changes in wheat under water deficit conditions. Biol Trace Elem Res 151:284–293

    Article  PubMed  CAS  Google Scholar 

  • Nawaz F, Ashraf MY, Ahmad R, Waraich EA, Shabbir RN, Bukhari MA (2015) Supplemental selenium improves wheat grain yield and quality through alterations in biochemical processes under normal and water deficit conditions. Food Chem 175:350–357

    Article  PubMed  CAS  Google Scholar 

  • Nawaz F, Naeem M, Ashraf MY, Tahir MN, Zulfiqar B, Salahuddin M, Shabbir RN, Aslam M (2016) Selenium supplementation affects physiological and biochemical processes to improve fodder yield and quality of maize (Zea mays L.) under water deficit conditions. Front Plant Sci 7:1438

    PubMed  PubMed Central  Google Scholar 

  • Negrão S, Schmöckel SM, Tester M (2017) Evaluating physiological responses of plants to salinity stress. Ann Bot 119:1–11

    Article  PubMed  Google Scholar 

  • Nestel P, Bouis HE, Meenakshi JV, Pfeiffer W (2006) Biofortification of staple food crops. J Nutr 136:1064–1067

    Article  PubMed  CAS  Google Scholar 

  • Oldfield JE (2002) Selenium world atlas (2002 Updated Edition). Selenium-Tellurium Development Association (www.369.com.cn/En/Se%20Atlas%202002.pdf)

  • Pandey C, Raghuram B, Sinhab AK, Gupta M (2015) miRNA plays a role in the antagonistic effect of selenium on arsenic stress in rice seedlings. Metallomics 7:857–866

    Article  PubMed  CAS  Google Scholar 

  • Pedrero Z, Madrid Y, Hartikainen H, Cámara C (2008) Protective effect of selenium in broccoli (Brassica oleracea) plants subjected to cadmium exposure. J Agric Food Chem 56:266–271

    Article  PubMed  CAS  Google Scholar 

  • Proietti P, Nasini L, Del Buono D, D’Amato R, Tedeschini E, Businelli D (2013) Selenium protects olive (Olea europaea L.) from drought stress. Sci Hort 164:165–171

    Article  CAS  Google Scholar 

  • Rayman MP (2000) The importance of selenium to human health. Lancet 356:233–241

    Article  PubMed  CAS  Google Scholar 

  • Rotruck JT, Pope AL, Ganther HE, Swanson AB, Hafeman DG et al (1973) Selenium: biochemical role as a component of gluthathione peroxidase. Science 179:588–590

    Article  PubMed  CAS  Google Scholar 

  • Sajedi NA, Ardakani MR, Madani H, Naderi A, Miransari M (2011) The effects of selenium and other micronutrients on the antioxidant activities and yield of corn (Zea mays L.) under drought stress. Physiol Mol Biol Plants 17:215–222

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schwarz K, Foltz CM (1957) Selenium as an integral part of factor 3 against dietary necrotic liver degeneration. J Am Chem Soc 70:3292–3293

    Article  Google Scholar 

  • Shanker AK (2006) Countering UV-B stress in plants: does selenium have a role? Plant Soil 82:21–26

    Article  CAS  Google Scholar 

  • Shanker K, Mishra S, Srivastava S, Srivastava R, Dass S, Prakash S, Srivastava MM (1996) Effect of selenite and selenate on plant uptake of cadmium by maize (Zea mays). Bull Environ Contam Toxicol 56:419–424

    Article  PubMed  CAS  Google Scholar 

  • Sieprawska A, Kornaś A, Filek M (2015) Involvement of selenium in protective mechanisms of plants under environmental stress conditions – review. Acta Biol Cracov Ser Bot 57:1–12

    Google Scholar 

  • Sun H, Dai H, Wang X, Wang G (2016a) Physiological and proteomic analysis of selenium-mediated tolerance to Cd stress in cucumber (Cucumis sativus L.) Ecotoxicol Environ Saf 133:114–126

    Article  PubMed  CAS  Google Scholar 

  • Sun H, Wang X, Wang Y, Wei Y, Wang G (2016b) Alleviation of cadmium toxicity in cucumber (Cucumis sativus) seedlings by the application of selenium. Spanish J Agric Res 14:e1105

    Article  Google Scholar 

  • Tadina N, Germ M, Kreft I, Breznik B, Gaberščik A (2007) Effects of water deficit and selenium on common buckwheat (Fagopyrum esculentum Moench.) plants. Photosynthetica 45:472–476

    Article  CAS  Google Scholar 

  • Theocharis A, Clément C, Barka EA (2012) Physiological and molecular changes in plants grown at low temperatures. Planta 235:1091–1105

    Article  PubMed  CAS  Google Scholar 

  • Wang CQ (2011) Water-stress mitigation by selenium in Trifolium repens L. J Plant Nutr Soil Sci 174:276–282

    Article  CAS  Google Scholar 

  • Wang YD, Wang X, Won YS (2012) Proteomics analysis reveals multiple regulatory mechanisms in response to selenium in rice. J Proteome 75:1849–1866

    Article  CAS  Google Scholar 

  • White PJ (2016) Selenium accumulation by plants. Ann Bot 117:217–235

    PubMed  CAS  Google Scholar 

  • White PJ, Broadley MR (2009) Biofortification of crops with seven mineral elements often lacking in human diets – iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytol 182:49–84

    Article  PubMed  CAS  Google Scholar 

  • Wu Z, Yin X, Bañuelos GS, Lin ZQ, Liu Y, Li M, Yuan L (2016) Indications of selenium protection against cadmium and lead toxicity in oilseed rape (Brassica napus L.) Front Plant Sci 7:1875

    PubMed  PubMed Central  Google Scholar 

  • Yadav SK, Singla-Pareek SL, Sopory SK (2008) An overview on the role of methylglyoxal and glyoxalases in plants. Drug Metabol Drug Interact 23:51–68

    Article  PubMed  CAS  Google Scholar 

  • Yao X, Chu J, Wang G (2009) Effects of selenium on wheat seedlings under drought stress. Biol Trace Elem Res 130:283–290

    Article  PubMed  CAS  Google Scholar 

  • Yao X, Jianzhou C, Xueli H, Binbin L, Jingmin L, Zhaowei Y (2013) Effects of selenium on agronomical characters of winter wheat exposed to enhanced ultraviolet-B. Ecotoxicol Environ Saf 92:320–326

    Article  PubMed  CAS  Google Scholar 

  • Yao X, Chu J, He X, Si C (2014) Grain yield, starch, protein, and nutritional element concentrations of winter wheat exposed to enhanced UV-B during different growth stages. J Cereal Sci 60:31–36

    Article  CAS  Google Scholar 

  • Yathavakilla SKV, Caruso JA (2007) A study of Se-Hg antagonism in Glycine max (soybean) roots by size exclusion and reversed phase HPLC–ICPMS. Anal Bioanal Chem 389:715–723

    Article  PubMed  CAS  Google Scholar 

  • Zembala M, Filek M, Walas S, Mrowiec H, Kornaś A, Miszalski Z, Hartikainen H (2010) Effect of selenium on macro- and microelement distribution and physiological parameters of rape and wheat seedlings exposed to cadmium stress. Plant Soil 329:457–468

    Article  CAS  Google Scholar 

  • Zhu JK (2003) Regulation of ion homeostasis under salt stress. Curr Opi Plant Biol 6:441–445

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara Hawrylak-Nowak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hawrylak-Nowak, B., Hasanuzzaman, M., Matraszek-Gawron, R. (2018). Mechanisms of Selenium-Induced Enhancement of Abiotic Stress Tolerance in Plants. In: Hasanuzzaman, M., Fujita, M., Oku, H., Nahar, K., Hawrylak-Nowak, B. (eds) Plant Nutrients and Abiotic Stress Tolerance. Springer, Singapore. https://doi.org/10.1007/978-981-10-9044-8_12

Download citation

Publish with us

Policies and ethics