Skip to main content

Material Analysis for a New Kind of Hybrid Phantoms Utilized in Multimodal Imaging

  • Conference paper
  • First Online:
Book cover World Congress on Medical Physics and Biomedical Engineering 2018

Part of the book series: IFMBE Proceedings ((IFMBE,volume 68/1))

Abstract

The use of phantoms for medical imaging is of increasing importance, especially concerning hybrid imaging technologies. The purpose of this study was to find new materials suitable for hybrid phantoms which can be used in magnet resonance imaging, CT and nuclear medicine. Suitable phantom materials have to meet the requirements: tissue-equivalent relaxation and absorption/scattering coefficients, material stability/strength to reproduce tissue structures, no bacterial infestation of the material, cost-effective use. The material samples in this study were based on the basic components: carrageenan (3%, m/m), agarose (0.8–1.0%, m/m), GdCl3 (30–100 µmol/kg), NaNO3 (antiseptic agent, <0.1%, m/m) and H2O. Additional modifiers were added: Ba(NO3)2, SiO2, CuSO4, MgCl2. These modifiers influence the relaxation times and abortion characteristics. For tissue-equivalency, T1/T2-times and Hounsfield Units (HU) of material samples were compared to various human tissues after performing the following experiments: MR-relaxometry was measured using a 1.5T MRI scanner. HU were acquired at 80 kV/110 kV/130 kV using a CT scanner; for nuclear medicine, material samples (10 MBq, TC-99 m) were examined in a water-phantom utilizing a SPECT-system. Tissue structures, like soft-tissue, brain (gray/white matter), kidney and liver can be simulated with high accuracy in their relaxation times and HU-values using (Ba(NO3)2 as an additional modifier. This modifier meets all requirements and covers T1/T2-times of 700–1400 ms/50–80 ms and HU-values of 12–740 HU. Functional relationships were investigated by describing the T1/T2-times in dependency of the T1/T2-modifiers. Other modifiers did not meet all tissue-equivalent characteristics. Our gel-based approach can also be used in nuclear medicine to generate active tissue structures, e.g. hot nodules with TC-99 m.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R.-D. Vre, R. Grimee, F. Parmentier, J. Binet: The use of agar gel as a basic reference material for calibrating relaxation times and imaging parameters, Magnetic Resonance in Medicine 2, 176–179 (1985).

    Google Scholar 

  2. M. Bucciolini, L. Ciraolo, B. Lehmann: Simulation of biologic tissues by using agar gels at magnetic resonance imaging, Acta Radiologica 30, 667–669 (1989).

    Google Scholar 

  3. M. D. Mitchell, H. L. Kundel, L. Axel, P. M. Joseph: Agarose as a tissue equivalent phantom material for nmr imaging, Magnetic Resonance Imaging 4, 263–266 (1986).

    Google Scholar 

  4. J. O. Christoffersson, L. Olsson, S. Sjoeberg: Nickel-doped agarose gel phantoms in mr imaging, Acta radiologica 32, 426–431 (1991).

    Google Scholar 

  5. F. Howe: Relaxation times in paramagnetically doped agarose gels as a function of temperature and ion concentration, Magnetic resonance imaging 6, 263–270 (1988).

    Google Scholar 

  6. K. A. Kraft, P. P. Fatouros, G. D. Clarke, P. R. S. Kishore: An mri phantom material for quantitative relaxometry, Magnetic Resonance in Medicine 5, 555–562 (1987).

    Google Scholar 

  7. W. Derbyshire, I. D. Duff: N.m.r. of agarose gels, Faraday Discuss. Chem. Soc. 57, 243–254 (1974).

    Google Scholar 

  8. I. Duff, W. Derbyshire: Nmr of frozen agarose gels, Journal of Magnetic Resonance (1969) 17, 89–94 (1975).

    Google Scholar 

  9. I. Mano, H. Goshima, M. Nambu, M. Iio: New polyvinyl alcohol gel material for mri phantoms, Magnetic Resonance in Medicine 3, 921–926 (1986).

    Google Scholar 

  10. K. C. Chu, B. K. Rutt: Polyvinyl alcohol cryogel: an ideal phantom material for mr studies of arterial flow and elasticity, Magnetic Resonance in Medicine 37, 314–319 (1997).

    Google Scholar 

  11. M. W. Groch, J. A. Urbon, W. D. Erwin, S. Al-Doohan: An mri tissue equivalent lesion phantom using a novel polysaccharide material, Magnetic Resonance Imaging 9, 417–421 (1991).

    Google Scholar 

  12. G. P. Mazzara, R. W. Briggs, Z. Wu, B. G. Steinbach: Use of a modified polysaccharide gel in developing a realistic breast phantom for mri, Magnetic resonance imaging 14, 639–648 (1996).

    Google Scholar 

  13. E. L. Madsen, G. D. Fullerton: Second annual meeting of the society for magnetic resonance imaging prospective tissue-mimicking materials for use in nmr imaging phantoms, Magnetic Resonance Imaging 1, 135–141 (1982).

    Google Scholar 

  14. J. Blechinger, E. Madsen, G. Frank: Tissue-mimicking gelatin–agar gels for use in magnetic resonance imaging phantoms, Medical physics 15, 629–636 (1988).

    Google Scholar 

  15. F. De Luca, B. Maraviglia, A. Mercurio: Biological tissue simulation and standard testing material for mri, Magnetic Resonance in Medicine 4, 189–192 (1987).

    Google Scholar 

  16. S. Ohno, H. Kato, H., T. Harimoto, Y. Ikemoto, K. Yoshitomi, S. Kadohisa, M. Kuroda, S. Kanazawa: Production of a human-tissue-equivalent MRI phantom: optimization of material heating, Magnetic Resonance in Medical Sciences 7, 131–140 (2008).

    Google Scholar 

  17. A. Hellerbach, V. Schuster, A. Jansen, J. Sommer: Mri phantoms? Are there alternatives to agar?, PLoS ONE 8, 1–8 (2013).

    Google Scholar 

  18. K. Yoshimura, H. Kato, M. Kuroda, A. Yoshida, K. Hanamoto, A. Tanaka, M. Tsunoda, S. Kanazawa, K. Shibuya, S. Kawasaki, Y. Hiraki: Development of a tissue-equivalent MRI phantom using carrageenan gel, Magnetic Resonance in Medicine 50, 1011–1017 (2003).

    Google Scholar 

  19. H. Krieger: Strahlungsmessung und Dosimetrie. 2nd edn, Springer Spektrum (2013).

    Google Scholar 

  20. S. J. Graham, G. J. Stanisz, A. Kecojevic, M. J. Bronskill, R. M. Henkelman: Analysis of changes in MR properties of tissues after heat treatment. Magn. Reson. Med. 42: 1061–1071 (1999).

    Google Scholar 

  21. A. Cieszanowski, W. Szeszkowski, M. Golebiowski, D. K. Bielecki, M. Grodzicki, B. Pruszynski. Eur Radiol 12, 2273 (2012).

    Google Scholar 

  22. T. Aherne, D. Tscholakoff, W. Finkbeiner, U. Sechtem, N. Derugin, E. Yee, C. B. Higgins: Magnetic resonance imaging of cardiac transplants: the evaluation of rejection of cardiac allografts with and without immunosuppression. Circulation. 74, 145–156 (1986).

    Google Scholar 

  23. G. J. Stanisz, E. E. Odrobina, J. Pun, M. Escaravage, S. J. Graham, M. J. Bronskill, R. M. Henkelman: T1, T2 relaxation and magnetization transfer in tissue at 3T. Magn. Reson. Med., 54: 507–512 (2005).

    Google Scholar 

  24. S. C. Deoni, B. K. Rutt, T. M. Peters: Rapid combined t1 and t2 mapping using gradient recalled acquisition in the steady state, Magnetic Resonance in Medicine 49, 515–526 (2003).

    Google Scholar 

  25. G. J. Stanisz, E. E. Odrobina, J. Pun, M. Escaravage, S. J. Graham, M. J. Bronskill, R. M. Henkelman: T1, T2 relaxation and magnetization transfer in tissue at 3T, Magnetic Resonance in Medicine 54, 507–512 (2005).

    Google Scholar 

  26. C. M. J. de Bazelaire, G. D. Duhamel, N. M. Rofsky, D. C. Alsop: Mr imaging relaxation times of abdominal and pelvic tissues measured in vivo at 3.0 T: Preliminary results, Radiology 230, 652–659 (2004).

    Google Scholar 

  27. M. A. Goldberg, P. F. Hahn, S. Saini, M. Cohen, P. Reimer, T. Brady, P. Mueller: Value of t1 and t2 relaxation times from echoplanar mr imaging in the characterization of focal hepatic lesions., AJR. American journal of roentgenology 160, 1011–1017 (1993).

    Google Scholar 

  28. M. Barth, E. Moser: Proton nmr relaxation times of human blood samples at 1.5 t and implications for functional mri, Cellular and molecular biology 43, 783–791 (1997).

    Google Scholar 

Download references

Acknowledgements

We gratefully thank the institute for radiology and nuclear medicine at the Paracelsus Private Medical University for providing their MR scanner for relaxometry measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Stich .

Editor information

Editors and Affiliations

Ethics declarations

No humans or animals are involved in this study. The study was performed in compliance with ethical standards.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Electronic Supplementary Material

Electronic Supplementary Material

Suppl. 1: Figure of the material sample for MRI and CT measurements and spherical material sample for measurements in nuclear medicine.

University-Server URL:

https://www.oth-aw.de/files/oth-aw/Personen/Stich/Suppl1_compressed.tif

Suppl. 2: Figure of the measured and fitted SIR and SSE signals for the basic component mixture with different modifiers.

University-Server URL:

https://www.oth-aw.de/files/oth-aw/Personen/Stich/Suppl2_compressed.tiff

Suppl. 3: Surface and contour plots of the regression polynomials PT1(G, B) for the T1 relaxation and PT2(G, B) for the T2 relaxation.


University-Server URL:

https://www.oth-aw.de/files/oth-aw/Personen/Stich/Suppl3_compressed.tiff

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Stich, M. et al. (2019). Material Analysis for a New Kind of Hybrid Phantoms Utilized in Multimodal Imaging. In: Lhotska, L., Sukupova, L., Lacković, I., Ibbott, G.S. (eds) World Congress on Medical Physics and Biomedical Engineering 2018. IFMBE Proceedings, vol 68/1. Springer, Singapore. https://doi.org/10.1007/978-981-10-9035-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-9035-6_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-9034-9

  • Online ISBN: 978-981-10-9035-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics