Skip to main content

Advanced Miniature Microscopy for Brain Imaging

  • Chapter
  • First Online:

Part of the book series: Progress in Optical Science and Photonics ((POSP,volume 5))

Abstract

To image neuronal activities down to single spines in freely behaving animal has already been the holy grail of neuroscientists. To achieve that goal, two-photon microscope must be miniaturized to be attached to the animal without interfering animal movements. In the past fifteen years, many groups have published different designs, albeit that none of them is not widely used by the neuroscience community. Here, we have summarized the major challenges that prevent prevalent applications of current miniature two-photon microscopy (TPM) for high-resolution imaging in freely behaving mice, and different configurations that may be used to address each challenge. Based on this theoretical analysis, we have provided detailed design of our high-resolution, miniaturized two-photon microscope (FHIRM-TPM) and its latest revisions that enable volumetric imaging capability and larger field of view and deeper penetration depth.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. M. Minderer, C.D. Harvey, F. Donato, E.I. Moser, Neuroscience: virtual reality explored. Nature 533(7603), 324–325 (2016). https://doi.org/10.1038/nature17899

    Article  Google Scholar 

  2. Z.M. Aghajan, L. Acharya, J.J. Moore, J.D. Cushman, C. Vuong, M.R. Mehta, Impaired spatial selectivity and intact phase precession in two-dimensional virtual reality. Nat. Neurosci. 18(1), 121–128 (2015). https://doi.org/10.1038/nn.3884

    Article  Google Scholar 

  3. E.J. Hamel, B.F. Grewe, J.G. Parker, M.J. Schnitzer, Cellular level brain imaging in behaving mammals: an engineering approach. Neuron 86(1), 140–159 (2015). https://doi.org/10.1016/j.neuron.2015.03.055

    Article  Google Scholar 

  4. C.K. Kim, S.J. Yang, N. Pichamoorthy, N.P. Young, I. Kauvar, J.H. Jennings, T.N. Lerner, A. Berndt, S.Y. Lee, C. Ramakrishnan, T.J. Davidson, M. Inoue, H. Bito, K. Deisseroth, Simultaneous fast measurement of circuit dynamics at multiple sites across the mammalian brain. Nat. Methods 13(4), 325–328 (2016). https://doi.org/10.1038/nmeth.3770

    Article  Google Scholar 

  5. I. Ferezou, S. Bolea, C.C. Petersen, Visualizing the cortical representation of whisker touch: voltage-sensitive dye imaging in freely moving mice. Neuron 50(4), 617–629 (2006). https://doi.org/10.1016/j.neuron.2006.03.043

    Article  Google Scholar 

  6. K.K. Ghosh, L.D. Burns, E.D. Cocker, A. Nimmerjahn, Y. Ziv, A.E. Gamal, M.J. Schnitzer, Miniaturized integration of a fluorescence microscope. Nat. Methods 8(10), 871–878 (2011). https://doi.org/10.1038/nmeth.1694

    Article  Google Scholar 

  7. Z. Gorocs, Y. Rivenson, H. Ceylan Koydemir, D. Tseng, T.L. Troy, V. Demas, A. Ozcan, Quantitative fluorescence sensing through highly autofluorescent, scattering, and absorbing media using mobile microscopy. ACS Nano 10(9), 8989–8999 (2016). https://doi.org/10.1021/acsnano.6b05129

    Article  Google Scholar 

  8. F. Helmchen, M.S. Fee, D.W. Tank, W. Denk, A miniature head-mounted two-photon microscope. Neuron 31(6), 903–912 (2001). https://doi.org/10.1016/s0896-6273(01)00421-4

    Article  Google Scholar 

  9. C.J. Engelbrecht, R.S. Johnston, E.J. Seibel, F. Helmchen, Ultra-compact fiber-optic two-photon microscope for functional fluorescence imaging in vivo. Opt. Express 16(8), 5556 (2008). https://doi.org/10.1364/oe.16.005556

    Article  Google Scholar 

  10. W. Piyawattanametha, E.D. Cocker, L.D. Burns, R.P.J. Barretto, J.C. Jung, H. Ra, O. Solgaard, M.J. Schnitzer, In vivo brain imaging using a portable 2.9 g two-photon microscope based on a microelectromechanical systems scanning mirror. Opt. Lett. 34(15), 2309 (2009). https://doi.org/10.1364/ol.34.002309

    Article  Google Scholar 

  11. J. Sawinski, D.J. Wallace, D.S. Greenberg, S. Grossmann, W. Denk, J.N.D. Kerr, Visually evoked activity in cortical cells imaged in freely moving animals. Proc. Natl. Acad. Sci. 106(46), 19557–19562 (2009). https://doi.org/10.1073/pnas.0903680106

    Article  Google Scholar 

  12. W. Zong, R. Wu, M. Li, Y. Hu, Y. Li, J. Li, H. Rong, H. Wu, Y. Xu, Y. Lu, H. Jia, M. Fan, Z. Zhou, Y. Zhang, A. Wang, L. Chen, H. Cheng, Fast high-resolution miniature two-photon microscopy for brain imaging in freely behaving mice. Nat. Methods 14(7), 713–719 (2017). https://doi.org/10.1038/nmeth.4305

    Article  Google Scholar 

  13. D.R. Rivera, C.M. Brown, D.G. Ouzounov, I. Pavlova, D. Kobat, W.W. Webb, C. Xu, Compact and flexible raster scanning multiphoton endoscope capable of imaging unstained tissue. Proc. Natl. Acad. Sci. U. S. A. 108(43), 17598–17603 (2011). https://doi.org/10.1073/pnas.1114746108

    Article  Google Scholar 

  14. Y. Zhang, M.L. Akins, K. Murari, J. Xi, M.J. Li, K. Luby-Phelps, M. Mahendroo, X. Li, A compact fiber-optic SHG scanning endomicroscope and its application to visualize cervical remodeling during pregnancy. Proc. Natl. Acad. Sci. U. S. A. 109(32), 12878–12883 (2012). https://doi.org/10.1073/pnas.1121495109

    Article  Google Scholar 

  15. F. Helmchen, D.W. Tank, W. Denk, Enhanced two-photon excitation through optical fiber by single-mode propagation in a large core. Appl. Opt. 41(15), 2930 (2002). https://doi.org/10.1364/ao.41.002930

    Article  Google Scholar 

  16. G.P. Agrawal, Applications of nonlinear fiber optics. Optics and Photonics (2001)

    Google Scholar 

  17. W. Gobel, A. Nimmerjahn, F. Helmchen, Distortion-free delivery of nanojoule femtosecond pulses from a Ti:sapphire laser through a hollow-core photonic crystal fiber. Opt. Lett. 29(11), 1285–1287 (2004)

    Article  Google Scholar 

  18. C. Wang, N. Ji, Characterization and improvement of three-dimensional imaging performance of GRIN-lens-based two-photon fluorescence endomicroscopes with adaptive optics. Opt. Express 21(22), 27142–27154 (2013). https://doi.org/10.1364/OE.21.027142

    Article  Google Scholar 

  19. Sawinski Jr, W. Denk, Miniature random-access fiber scanner for in vivo multiphoton imaging. J. Appl. Phys. 102(3), 034701 (2007). https://doi.org/10.1063/1.2763945

    Article  Google Scholar 

  20. M.T. Myaing, D.J. MacDonald, X. Li, Fiber-optic scanning two-photon fluorescence endoscope. Opt. Lett. 31(8), 1076 (2006). https://doi.org/10.1364/ol.31.001076

    Article  Google Scholar 

  21. W. Piyawattanametha, R.P.J. Barretto, T.H. Ko, B.A. Flusberg, E.D. Cocker, H. Ra, D. Lee, O. Solgaard, M.J. Schnitzer, Fast-scanning two-photon fluorescence imaging based on a microelectromechanical systems two- dimensional scanning mirror. Opt. Lett. 31(13), 2018 (2006). https://doi.org/10.1364/ol.31.002018

    Article  Google Scholar 

  22. W. Jung, S. Tang, D.T. McCormic, T. Xie, Y.-C. Ahn, J. Su, I.V. Tomov, T.B. Krasieva, B.J. Tromberg, Z. Chen, Miniaturized probe based on a microelectromechanical system mirror for multiphoton microscopy. Opt. Lett. 33(12), 1324 (2008). https://doi.org/10.1364/ol.33.001324

    Article  Google Scholar 

  23. A. Grayson, A BioMEMS review: MEMS technology for physiologically integrated devices. Proc. IEEE 92(1), 6–21 (2004)

    Article  Google Scholar 

  24. V. Milanovic, Gimbal-less monolithic silicon actuators for tip–tilt–piston micromirror applications. J. Sel. Topics Quantum Electron. 10(3), 462–471 (2004)

    Article  Google Scholar 

  25. R. Prakash, O. Yizhar, B. Grewe, C. Ramakrishnan, N. Wang, I. Goshen, A.M. Packer, D.S. Peterka, R. Yuste, M.J. Schnitzer, K. Deisseroth, Two-photon optogenetic toolbox for fast inhibition, excitation and bistable modulation. Nat. Methods 9(12), 1171–1179 (2012). https://doi.org/10.1038/nmeth.2215

    Article  Google Scholar 

  26. J.P. Rickgauer, K. Deisseroth, D.W. Tank, Simultaneous cellular-resolution optical perturbation and imaging of place cell firing fields. Nat. Neurosci. 17(12), 1816–1824 (2014). https://doi.org/10.1038/nn.3866

    Article  Google Scholar 

  27. G. Matz, B. Messerschmidt, H. Gross, Design and evaluation of new color-corrected rigid endomicroscopic high NA GRIN-objectives with a sub-micron resolution and large field of view. Opt. Express 24(10), 10987–11001 (2016). https://doi.org/10.1364/OE.24.010987

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Weijian Zong or Liangyi Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zong, W., Chen, L. (2019). Advanced Miniature Microscopy for Brain Imaging. In: Kao, FJ., Keiser, G., Gogoi, A. (eds) Advanced Optical Methods for Brain Imaging. Progress in Optical Science and Photonics, vol 5. Springer, Singapore. https://doi.org/10.1007/978-981-10-9020-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-9020-2_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-9019-6

  • Online ISBN: 978-981-10-9020-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics