Skip to main content

Adaptive Optics in Multiphoton Microscopy

  • Chapter
  • First Online:
Advanced Optical Methods for Brain Imaging

Part of the book series: Progress in Optical Science and Photonics ((POSP,volume 5))

  • 1633 Accesses

Abstract

Multiphoton (MP) microscopy provides inherent confocality and it has the ability to achieve three-dimensional imaging of thick samples. However, biological specimens are plenty of inhomogeneous structures that degrade and limit its performance. These are optically understood as specimen-induced aberrations and scattering, which negative influence in MP image quality increase with sample’s depth. Measurement and correction of aberrations are the goals of adaptive optics (AO) techniques. Although AO approaches were early used in conventional microscopes, it was only a question of time to have similar procedures implemented into MP imaging devices. A number of robust and efficient AO strategies have been implemented into MP microscopes, allowing these devices to provide high-resolution images of layers located at deeper locations within different biological samples, in particular brain tissue. Along this chapter, different AO MP approaches developed in the last two decades will be reviewed and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. F. Zernike, Beugungstheorie des Schneidenverfahrens und Seiner Verbesserten Form, der Phasenkontrastmethode. Physica 1, 689–704 (1934)

    Article  Google Scholar 

  2. R.K. Tyson, Principles of Adaptive Optics (Academic Press, London, 1991)

    Google Scholar 

  3. H.W. Babcock, The possibility of compensating astronomical seeing. Publ. Astron. Soc. Pac. 65, 229–236 (1953)

    Article  Google Scholar 

  4. W. Lubeigt, G. Valentine, D. Burns, Enhancement of laser performance using an intracavity deformable membrane mirror. Opt. Express 16, 10943–10955 (2008)

    Article  Google Scholar 

  5. D.R. Williams, J. Porter, Development of adaptive optics in vision and ophthalmology, in Adaptive Optics for Vision Sciences, ed. by J. Porter, (Wiley, New York, 2006)

    Google Scholar 

  6. M.J. Booth, Adaptive optics in microscopy. Philos. Trans. R. Soc. A 365, 2829–2843 (2007)

    Article  Google Scholar 

  7. F. Roddier, Curvature sensing and compensation: a new concept in adaptive optics. Appl. Opt. 27, 1223–1225 (1988)

    Article  Google Scholar 

  8. R. Ragazzoni, Pupil plane wavefront sensing with an oscillating prism. J. Mod. Opt. 43, 289–293 (1996)

    Article  Google Scholar 

  9. J. Hartmann, Bemerkungen über den Bau und die Justirung von Spektrographen Zt Instrumentenkd 20, 47–58 (1900)

    Google Scholar 

  10. R.V. Shack, B.C. Platt, Production and use of a lenticular Hartmann screen. J. Opt. Soc. Am. 61, 656–660 (1971)

    Google Scholar 

  11. N. Doble, D.T. Miller, Wavefront correctors for vision science, in Adaptive Optics for Vision Sciences, ed. by J. Porter et al. (Wiley, New York)

    Google Scholar 

  12. B.A.E. Saleh, M.C. Teich, Fundamantal of Photonics (Wiley, New York, 1991)

    Book  Google Scholar 

  13. J.A. Kubby (ed.), Adaptive Optics for Biological Imaging (CRC Press, Boca Raton, 2013)

    Google Scholar 

  14. M.J. Booth, T. Wilson, Refractive-index-mismatch induced aberrations in single-photon and two-photon microscopy and the use of aberration correction. J. Biomed. Opt. 6, 266–272 (2001)

    Article  Google Scholar 

  15. M. Schwertner, M.J. Booth, T. Wilson, Simple optimization procedure for objective lens correction collar setting. J. Microsc. 217, 184–187 (2005)

    Article  MathSciNet  Google Scholar 

  16. W. Lo, Y. Sun, S.-J. Lin et al., Spherical aberration correction in multiphoton fluorescence imaging using objective correction collar. J. Biomed. Opt. 10, 034006 (2005)

    Article  Google Scholar 

  17. R.D. Simmonds, T. Wilson, M.J. Booth, Effects of aberrations and specimen structure in conventional, confocal and two-photon fluorescence microscopy. J. Microsc. 245, 63–71 (2012)

    Article  Google Scholar 

  18. M. Skorsetz, P. Artal, J.M. Bueno, Performance evaluation of a sensorless adaptive optics multiphoton microscope. J. Microsc. 261, 249–258 (2016)

    Article  Google Scholar 

  19. S.P. Poland, A.J. Wright, S. Cobb et al., A demonstration of the effectiveness of a single aberration correction per optical slice in beam scanned optically sectioning microscopes. Micron 42, 318–323 (2011)

    Article  Google Scholar 

  20. M.J. Booth, Adaptive optical microscopy: the ongoing quest for a perfect image. Light Sci. Appl. 3, e165 (2014)

    Article  Google Scholar 

  21. J.M. Girkin, S.P. Poland, A.J. Wright, Adaptive optics for deeper imaging of biological samples. Curr. Opin. Biotechnol. 20, 106–110 (2009)

    Article  Google Scholar 

  22. M.J. Booth, M.A.A. Neil, R. Juskaitis, T. Wilson, Adaptive aberration correction in a confocal microscope. Proc. Natl. Acad. Sci. U.S.A. 99(5788), 5792 (2002)

    Google Scholar 

  23. M.A. Neil, R. Juskaitis, M.J. Booth et al., Adaptive aberration correction in a two-photon microscope. J. Microsc. 200, 105–108 (2000)

    Article  Google Scholar 

  24. A.J. Wright, D. Burns, B.A. Patterson et al., Exploration of the optimisation algorithms used in the implementation of adaptive optics in confocal and multiphoton microscopy. Microsc. Res. Tech. 67, 36–44 (2005)

    Article  Google Scholar 

  25. M. Skorsetz, P. Artal, J.M. Bueno, Modal-based algorithms for sensorless adaptive optics multiphoton microscopy, in Program and Abstract Book of Focus on Microscopy FOM 2014 (Sydney, Australia, 2014) p. 321

    Google Scholar 

  26. M.J. Booth, Wavefront sensorless adaptive optics for large aberrations. Opt. Lett. 32, 2006–2008 (2007)

    Article  Google Scholar 

  27. D. Débarre, E.J. Botcherby, M.J. Booth, T. Wilson, Adaptive optics for structured illumination microscopy. Opt. Express 16, 9290–9305 (2008)

    Article  Google Scholar 

  28. D. Débarre, E.J. Botcherby, T. Watanabe et al., Image-based adaptive optics for two-photon microscopy. Opt. Lett. 34, 2495–2497 (2009)

    Article  Google Scholar 

  29. T.J. Gould, D. Burke, J. Bewersdorf, M.J. Booth, Adaptive optics enables 3D STED microscopy in aberrating specimens. Opt. Express 20, 20998–21009 (2012)

    Article  Google Scholar 

  30. O. Azucena, J. Crest, S. Kotadia et al., Adaptive optics wide-field microscopy using direct wavefront sensing. Opt. Lett. 36, 825–827 (2011)

    Article  Google Scholar 

  31. S.A. Rahman, M.J. Booth, Direct wavefront sensing in adaptive optical microscopy using backscattered light. Appl. Opt. 52, 5523–5532 (2013)

    Article  Google Scholar 

  32. J.W. Cha, J. Ballesta, P.T. So, Shack-Hartmann wavefront-sensor-based adaptive optics system for multiphoton microscopy. J. Biomed. Opt. 15, 046022 (2010)

    Article  Google Scholar 

  33. M. Feierabend, M. Rückel, W. Denk, Coherence-gated wave-front sensing in strongly scattering samples. Opt. Lett. 29, 2255–2257 (2004)

    Article  Google Scholar 

  34. O. Albert, L. Sherman, G. Mourou et al., Smart microscope: an adaptive optics learning system for aberration correction in multiphoton confocal microscopy. Opt. Lett. 25, 52–54 (2000)

    Article  Google Scholar 

  35. L. Sherman, J.Y. Ye, O. Albert, T.B. Norris, Adaptive correction of depth-induced aberrations in multiphoton scanning microscopy using a deformable mirror. J. Microsc. 206, 65–71 (2002)

    Article  MathSciNet  Google Scholar 

  36. P.N. Marsh, D. Burns, J.M. Girkin, Practical implementation of adaptive optics in multiphoton microscopy. Opt. Express 11, 1123–1130 (2003)

    Article  Google Scholar 

  37. J.M. Vijverberg, J. Orazio, M. Lin, Adaptive optics in confocal and two-photon microscopy of rat brain: a single correction per optical section. Proc. SPIE 6442, 0T1–0T7 (2007)

    Google Scholar 

  38. Y. Zhou, T. Bifano, C. Lin, Adaptive optics two-photon fluorescence microscopy. Proc. SPIE 6467, 051–057 (2007)

    Google Scholar 

  39. A. Jesacher, A. Thayil, K. Grieve et al., Adaptive harmonic generation microscopy of mammalian embryos. Opt. Lett. 34, 3154–3156 (2009)

    Article  Google Scholar 

  40. P.A. Muriello, K.W. Dunn, Improving signal levels in intravital multiphoton microscopy using an objective correction collar. Opt. Commun. 281, 1806–1812 (2008)

    Article  Google Scholar 

  41. P.S. Tsai, B. Migliori, K. Campbell et al., Spherical aberration correction in nonlinear microscopy and optical ablation using a transparent deformable membrane. Appl. Phys. Lett. 91, 191102 (2007)

    Article  Google Scholar 

  42. J.M. Bueno, M. Skorsetz, R. Palacios et al., Multiphoton imaging microscopy at deeper layers with adaptive optics control of spherical aberration. J. Biomed. Opt. 19, 011007 (2014)

    Article  Google Scholar 

  43. N. Matsumoto, T. Inoue, A. Matsumoto, S. Okazaki, Correction of depth-induced spherical aberration for deep observation using two-photon excitation fluorescence microscopy with spatial light modulator. Biomed. Opt. Express 6, 2575–2587 (2015)

    Article  Google Scholar 

  44. R. Aviles-Espinosa, J. Andilla, R. Porcar-Guezenec et al., Measurement and correction of in vivo sample aberrations employing a nonlinear guide-star in two-photon excited fluorescence microscopy. Biomed. Opt. Express 2, 3135–3149 (2011)

    Article  Google Scholar 

  45. X. Tao, A. Norton, M. Kissel et al., Adaptive optical two-photon microscopy using autofluorescent guide stars. Opt. Lett. 38, 5075–5078 (2013)

    Article  Google Scholar 

  46. K. Wang, D.E. Milkie, A. Saxena et al., Rapid adaptive optical recovery of optimal resolution over large volumes. Nat. Methods 11, 625–628 (2014)

    Article  Google Scholar 

  47. E.J. Gualda, J.M. Bueno, P.A. Artal, Wavefront optimized nonlinear microscopy of ex-vivo human retinas. J. Bimomed. Opt. 15, 026007 (2010)

    Article  Google Scholar 

  48. J.M. Bueno, E.J. Gualda, P. Artal, Adaptive optics multiphoton microscopy to study ex-vivo ocular tissues. J. Biomed. Opt. 15, 066004 (2010)

    Article  Google Scholar 

  49. J.M. Bueno, E.J. Gualda, P. Artal, Analysis of corneal stroma organization with wavefront optimized nonlinear microscopy. 30, 692–701 (2011)

    Article  Google Scholar 

  50. J. Wang, J.F. Léger, J. Binding et al., Measuring aberrations in the rat brain by coherence-gated wavefront sensing using a Linnik interferometer. Biomed. Opt. Express 3, 2510–2525 (2012)

    Article  Google Scholar 

  51. M. Rueckel, J.A. Mack-Bucher, W. Denk, Adaptive wavefront correction in two-photon microscopy using coherence-gated wavefront sensing. Proc. Natl. Acad. Sci. 103, 17137–17142 (2006)

    Article  Google Scholar 

  52. R. Fiolka, K. Si, M. Cui, Complex wavefront corrections for deep tissue focusing using low coherence backscattered light. Opt. Express 20, 16532–16543 (2012)

    Article  Google Scholar 

  53. T. van Werkhoven, J. Antonello, H. Truong et al., Snapshot coherence-gated direct wavefront sensing for multi-photon microscopy. Opt. Express 22, 9715–9733 (2014)

    Article  Google Scholar 

  54. A. Leray, J. Mertz, Rejection of two-photon fluorescence background in thick tissue by differential aberration imaging. Opt. Express 14, 10565–10573 (2006)

    Article  Google Scholar 

  55. A. Leray, K. Lillis, J. Mertz, Enhanced background rejection in thick tissue with differential-aberration two-photon microscopy. Biophys. J. 94, 1449–1458 (2008)

    Article  Google Scholar 

  56. N. Ji, D.E. Milkie, E. Betzig, Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues. Nat. Methods 7, 141–147 (2010)

    Article  Google Scholar 

  57. N. Ji, T.R. Sato, E. Betzig, Characterization and adaptive optical correction of aberrations during in vivo imaging in the mouse cortex. Proc. Natl. Acad. Sci. 109, 22–27 (2012)

    Article  Google Scholar 

  58. J. Tang, R.N. Germain, M. Cui, Superpenetration optical microscopy by iterative multiphoton adaptive compensation technique. Proc. Natl. Acad. Sci. 109, 8434–8439 (2012)

    Article  Google Scholar 

  59. L. Kong, M. Cui, In vivo fluorescence microscopy via iterative multi-photon adaptive compensation technique. Opt. Express 22, 23786–23794 (2014)

    Article  Google Scholar 

  60. L. Kong, M. Cui, In vivo neuroimaging through the highly scattering tissue via iterative multi-photon adaptive compensation technique. Opt. Express 23, 6145–6150 (2015)

    Article  Google Scholar 

  61. L. Kong, J. Tang, M. Cui, In vivo volumetric imaging of biological dynamics in deep tissue via wavefront engineering. Opt. Express 24, 1214–1221 (2016)

    Article  Google Scholar 

  62. M. Oheim, E. Beaurepaire, E. Chaigneau et al., Two-photon microscopy in brain tissue: parameters influencing the imaging depth. J. Neurosci. Methods 111, 29–37 (2001)

    Article  Google Scholar 

  63. D. Kobat, M. Durst, N. Nishimura et al., Deep tissue multiphoton microscopy using longer wavelength excitation. Opt. Express 17, 13354–13364 (2009)

    Article  Google Scholar 

  64. J.M. Bueno, F.J. Ávila, P. Artal, Comparison of second harmonic microscopy images of collagen-based ocular tissues with 800 and 1045 nm. Biomed. Opt. Express 8, 5065–5074 (2017)

    Article  Google Scholar 

  65. P. Stoller, P. Celliers, K. Reiser, A. Rubenchik, Quantitative second-harmonic generation microscopy in collagen. Appl. Opt. 42, 5209–5219 (2003)

    Article  Google Scholar 

  66. F.J. Ávila, O. del Barco, J.M. Bueno, Polarization dependence of aligned collagen tissues imaged with second harmonic generation microscopy. J. Biomed. Opt. 20, 086001 (2015)

    Article  Google Scholar 

  67. F.J. Ávila, O. del Barco, J.M. Bueno, Polarization response of second-harmonic images for different collagen spatial distributions. J. Biomed. Opt. 21, 066015 (2016)

    Article  Google Scholar 

  68. J.M. Bueno, F.J. Ávila, P. Artal, Improved SHG images by combining polarization-control and adaptive optics, in Program and Abstract Book of Focus on Microscopy FOM 2016 (Taipei, Taiwan, 2016), p. 39

    Google Scholar 

  69. M. Cua, D.J. Wahl, Y. Zhao et al., Coherence-gated sensorless adaptive optics multiphoton retinal imaging. Sci. Rep. 6, 32223 (2016)

    Article  Google Scholar 

  70. J.M. Bueno, M. Skorsetz, S. Bonora, P. Artal, Wavefront correction in two-photon microscopy with a multi-actuator adaptive lens. Opt. Express (2018)

    Google Scholar 

Download references

Acknowledgements

This author thanks E. J. Gualda, M. Skorsetz, F. J. Ávila, and P. Artal for their help during the different MP experiments carried at the Laboratorio de Óptica of the Universidad de Murcia. Support from grants FIS2013-41237-R and FIS2016-76163-R is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan M. Bueno .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bueno, J.M. (2019). Adaptive Optics in Multiphoton Microscopy. In: Kao, FJ., Keiser, G., Gogoi, A. (eds) Advanced Optical Methods for Brain Imaging. Progress in Optical Science and Photonics, vol 5. Springer, Singapore. https://doi.org/10.1007/978-981-10-9020-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-9020-2_14

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-9019-6

  • Online ISBN: 978-981-10-9020-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics