Skip to main content

Super-Resolving Approaches Suitable for Brain Imaging Applications

  • Chapter
  • First Online:
Advanced Optical Methods for Brain Imaging

Part of the book series: Progress in Optical Science and Photonics ((POSP,volume 5))

  • 1597 Accesses

Abstract

Usage of imaging in the optical regime in biological research established itself as a fundamental tool to reveal answers to critical scientific questions in that field. Specialized techniques such as Golgi’s method, the Nissl staining technique, and others led further to remarkable findings in the fields of brain imaging and neuroscience research. Pushing modern research to the next level requires spatial and temporal resolution capabilities which are better than the conventional limits of optical imaging. Hence, a fascinating new world of super-resolved imaging that achieves higher-resolving capabilities, while still using the same wavelengths, has emerged. This chapter will first cover the historical development of super-resolution microscopy, while relating it to applications and development in brain imaging and neuroscience research. Further, we cover many of the current promising super-resolution methods and point to applicative achievements that may prove to be highly useful in the field of brain imaging. The super-resolving concept we aim to address includes among others structured illumination microscopy, stimulated emission depletion microscopy, photo-activated localization microscopy, stochastic optical reconstruction microscopy, near-field scanning microscopy, and alternative new labeled and label-free concepts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R.A.R. Zsigmondy, Properties of colloids, Nobelprize.org. Nobel Media AB 2014, vol. 1, p. Nobelprize.org. Nobel Media AB 2014, 1926

    Google Scholar 

  2. F. Zernike, How I discovered phase contrast. Science (80-.) 121(3141), 345–349 (1955)

    Google Scholar 

  3. S. Finger, Origins of Neuroscience: A History of Explorations into Brain Function (Oxford University Press, USA, 2001)

    Google Scholar 

  4. M. Lakadamyali, Super-resolution microscopy: going live and going fast. ChemPhysChem 15(4), 630–636 (2014)

    Article  Google Scholar 

  5. D.V. Patel, C.N.J. McGhee, Contemporary in vivo confocal microscopy of the living human cornea using white light and laser scanning techniques: a major review. Clin. Exp. Ophthalmol. 35(1), 71–88 (2007)

    Article  Google Scholar 

  6. C. Flors, C.N.J. Ravarani, D. Dryden, and others, Super-resolution imaging of DNA labelled with intercalating dyes. ChemPhysChem 10(13), 2201–2204 (2009)

    Google Scholar 

  7. R.M. Dickson, A.B. Cubitt, R.Y. Tsien, W.E. Moerner, On/off blinking and switching behaviour of single molecules of green fluorescent protein. Nature 388(6640), 355 (1997)

    Article  Google Scholar 

  8. K. Chung et al., Structural and molecular interrogation of intact biological systems. Nature 497(7449), 332–337 (2013)

    Article  Google Scholar 

  9. R.K. Chhetri, F. Amat, Y. Wan, B. Höckendorf, W.C. Lemon, P.J. Keller, Whole-animal functional and developmental imaging with isotropic spatial resolution. Nat. Methods 12(12), 1171 (2015)

    Article  Google Scholar 

  10. Y. Wu et al., Simultaneous multiview capture and fusion improves spatial resolution in wide-field and light-sheet microscopy. Optica 3(8), 897–910 (2016)

    Article  Google Scholar 

  11. A.G. York et al., Resolution doubling in live, multicellular organisms via multifocal structured illumination microscopy. Nat. Methods 9(7), 749–754 (2012)

    Article  Google Scholar 

  12. S.W. Hell, Microscopy and its focal switch. Nat. Methods 6(1), 24–32 (2009)

    Article  MathSciNet  Google Scholar 

  13. J.W. Goodman, Introduction to Fourier Optics, vol. 8, no. 5 (McGraw-Hill, New York)

    Google Scholar 

  14. L. Novotny, B. Hecht, O. Keller, Principles of nano-optics. Phys. Today 60(7), 62 (2007)

    Google Scholar 

  15. E. Abbe, Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung. Arch. Mikroskopische Anat. 9(1), 413–418 (1873)

    Article  Google Scholar 

  16. T. Wilson, C. Sheppard, Theory and Practice of Scanning Optical Microscopy, vol. 180 (Academic Press, London, 1984)

    Google Scholar 

  17. V. Mico, Z. Zalevsky, V. Mico, J. Garcia, Nanophotonics for optical super resolution from an information theoretical perspective: a review. J. Nanophotonics 3(1), 32502 (2009)

    Article  Google Scholar 

  18. G.T. Di Francia, Resolving power and information. J. Opt. Soc. Am. 45(7), 497 (1955)

    Article  Google Scholar 

  19. J.L. Harris, Resolving power and decision theory. J. Opt. Soc. Am. 54(5), 606 (1964)

    Article  Google Scholar 

  20. W. Lukosz, Optical systems with resolving powers exceeding the classical limit II. J. Opt. Soc. Am. 57(7), 932 (1967)

    Article  Google Scholar 

  21. W. Lukosz, Optical systems with resolving powers exceeding the classical limit. JOSA 56(11), 1463–1471 (1966)

    Article  Google Scholar 

  22. A.J. den Dekker, A. van den Bos, Resolution: a survey. J. Opt. Soc. Am. A 14(3), 547–557 (1997)

    Article  Google Scholar 

  23. M.A. Grimm, A.W. Lohmann, Superresolution image for one-dimensional objects. J. Opt. Soc. Am. 56(9), 1151 (1966)

    Article  Google Scholar 

  24. Z. Zalevsky, D. Mendlovic, Optical Superresolution (Springer, Berlin, 2003)

    Google Scholar 

  25. Z. Zalevsky, D. Mendlovic, A.W. Lohmann, IV Optical systems with improved resolving power. Prog. Opt. 40, 271–341 (2000)

    Article  Google Scholar 

  26. D. Mendlovic, A.W. Lohmann, Space–bandwidth product adaptation and its application to superresolution: fundamentals. J. Opt. Soc. Am. A 14(3), 558–562 (1997)

    Article  Google Scholar 

  27. L. Shao, B. Isaac, S. Uzawa, D.A. Agard, J.W. Sedat, M.G.L. Gustafsson, I5S: wide-field light microscopy with 100-nm-scale resolution in three dimensions. Biophys. J. 94(12), 4971–4983 (2008)

    Article  Google Scholar 

  28. S. Hell, E.H.K. Stelzer, Fundamental improvement of resolution with a 4Pi-confocal fluorescence microscope using two-photon excitation. Opt. Commun. 93(5–6), 277–282 (1992)

    Article  Google Scholar 

  29. A. Shemer, Z. Zalevsky, D. Mendlovic, N. Konforti, E. Marom, Time multiplexing superresolution based on interference grating projection. Appl. Opt. 41(35), 7397 (2002)

    Article  Google Scholar 

  30. M.G. Gustafsson, Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J. Microsc. 198(Pt 2), 82–87 (2000)

    Article  Google Scholar 

  31. J.T. Frohn, H.F. Knapp, A. Stemmer, True optical resolution beyond the Rayleigh limit achieved by standing wave illumination. Proc. Natl. Acad. Sci. U. S. A. 97(13), 7232–7236 (2000)

    Article  Google Scholar 

  32. V. Mico, Z. Zalevsky, P. García-Martínez, J. García, Synthetic aperture superresolution with multiple off-axis holograms. J. Opt. Soc. Am. A 23(12), 3162 (2006)

    Article  Google Scholar 

  33. S.A. Alexandrov, T.R. Hillman, T. Gutzler, D.D. Sampson, Synthetic aperture Fourier holographic optical microscopy. Phys. Rev. Lett. 97(16), 168102 (2006)

    Article  Google Scholar 

  34. W. Luo, A. Greenbaum, Y. Zhang, A. Ozcan, Synthetic aperture-based on-chip microscopy. Light Sci. Appl. 4(3), e261 (2015)

    Article  Google Scholar 

  35. S.W. Hell, J. Wichmann, Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt. Lett. 19(11), 780 (1994)

    Article  Google Scholar 

  36. S.W. Hell, M. Kroug, Ground-state-depletion fluorscence microscopy: a concept for breaking the diffraction resolution limit. Appl. Phys. B Lasers Opt. 60(5), 495–497 (1995)

    Article  Google Scholar 

  37. R. Heintzmann, T.M. Jovin, C. Cremer, Saturated patterned excitation microscopy—a concept for optical resolution improvement. J. Opt. Soc. Am. A 19(8), 1599 (2002)

    Article  Google Scholar 

  38. E. Betzig et al., Imaging intracellular fluorescent proteins at nanometer resolution. Science 313(5793), 1642–1645 (2006)

    Article  Google Scholar 

  39. M.J. Rust, M. Bates, X. Zhuang, Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods 3(10), 793–795 (2006)

    Article  Google Scholar 

  40. T. Dertinger, R. Colyer, G. Iyer, S. Weiss, J. Enderlein, Fast, background-free, 3D super-resolution optical fluctuation imaging (SOFI). Proc. Natl. Acad. Sci. 106(52), 22287–22292 (2009)

    Google Scholar 

  41. E. Rittweger, K.Y. Han, S.E. Irvine, C. Eggeling, S.W. Hell, STED microscopy reveals crystal colour centres with nanometric resolution. Nat. Photonics 3(3), 144–147 (2009)

    Article  Google Scholar 

  42. B. Huang, H. Babcock, X. Zhuang, Breaking the diffraction barrier: super-resolution imaging of cells. Cell 143(7), 1047–1058 (2010)

    Article  Google Scholar 

  43. A.H. Hainsworth, S. Lee, P. Foot, A. Patel, W.W. Poon, A.E. Knight, Super-resolution imaging of subcortical white matter using Stochastic Optical Reconstruction Microscopy (STORM) and Super-Resolution Optical Fluctuation Imaging (SOFI). Neuropathol. Appl. Neurobiol. (2017)

    Google Scholar 

  44. Y. Israel, R. Tenne, D. Oron, Y. Silberberg, Quantum correlation enhanced super-resolution localization microscopy enabled by a fibre bundle camera. Nat. Commun. 8 (2017)

    Google Scholar 

  45. J. Zhang, C.M. Carver, F.S. Choveau, M.S. Shapiro, Clustering and functional coupling of diverse ion channels and signaling proteins revealed by super-resolution STORM microscopy in neurons. Neuron 92(2), 461–478 (2016)

    Article  Google Scholar 

  46. T. Ilovitsh, Y. Danan, R. Meir, A. Meiri, Z. Zalevsky, Temporally flickering nanoparticles for compound cellular imaging and super resolution. Proc. SPIE 9721, 97210V–1 (2016)

    Article  Google Scholar 

  47. A.G. York, A. Ghitani, A. Vaziri, M.W. Davidson, H. Shroff, Confined activation and subdiffractive localization enables whole-cell PALM with genetically expressed probes. Nat. Methods 8(4), 327–333 (2011)

    Article  Google Scholar 

  48. F. Lemoult, M. Dupré, M. Fink, G. Lerosey, Subwavelength focusing and imaging from the far field using time reversal in subwavelength scaled resonant media, in Mathematics in Imaging (2017), p. MTh1C–1

    Google Scholar 

  49. O. Wagner, M. Schultz, Y. Ramon, E. Sloutskin, Optical-tweezing-based linear-optics nanoscopy. 24(8), 495–497 (2016)

    Google Scholar 

  50. V.N. Astratov et al., Optical nanoscopy with contact microlenses overcomes the diffraction limit, in SPIE Newsroom, Feb, vol. 1 (2016)

    Google Scholar 

  51. O. Tzang, O. Cheshnovsky, New modes in label-free super resolution based on photo-modulated reflectivity. Opt. Express 23(16), 20926–20932 (2015)

    Article  Google Scholar 

  52. O. Tzang, A. Pevzner, R.E. Marvel, R.F. Haglund, O. Cheshnovsky, Super-resolution in label-free photomodulated reflectivity. Nano Lett. 15(2), 1362–1367 (2015)

    Article  Google Scholar 

  53. E. McLeod et al., High-throughput and label-free single nanoparticle sizing based on time-resolved on-chip microscopy. ACS Nano 9(3), 3265–3273 (2015)

    Article  Google Scholar 

  54. E. McLeod, C. Nguyen, P. Huang, W. Luo, M. Veli, A. Ozcan, Tunable vapor-condensed nanolenses. ACS Nano 8(7), 7340–7349 (2014)

    Article  Google Scholar 

  55. A. Darafsheh, G.F. Walsh, L. Dal Negro, V.N. Astratov, Optical super-resolution by high-index liquid-immersed microspheres. Appl. Phys. Lett. 101(14), 141128 (2012)

    Article  Google Scholar 

  56. A. Gur, D. Fixler, V. Micó, J. Garcia, Z. Zalevsky, Linear optics based nanoscopy. Opt. Express 18(21), 22222 (2010)

    Article  Google Scholar 

  57. W. Luo, Y. Zhang, A. Feizi, Z. Göröcs, A. Ozcan, Pixel super-resolution using wavelength scanning. Light Sci. Appl. 5, e16060 (2016)

    Article  Google Scholar 

  58. Z. Zalevsky, Super-Resolved Imaging: Geometrical and Diffraction Approaches (Springer Science & Business Media, 2011)

    Google Scholar 

  59. C.B. Müller, J. Enderlein, Image scanning microscopy. Phys. Rev. Lett. 104(19), 1–4 (2010)

    Article  Google Scholar 

  60. A. Curd, A. Cleasby, K. Makowska, A. York, H. Shroff, M. Peckham, Construction of an instant structured illumination microscope. Methods 88, 37–47 (2015)

    Article  Google Scholar 

  61. C.J. Schwarz, Y. Kuznetsova, S.R.J. Brueck, Imaging interferometric microscopy. Opt. Lett. 28(16), 1424–1426 (2003)

    Article  Google Scholar 

  62. V. Mico, Z. Zalevsky, P. Garcia-Martinez, J. Garcia, Single-step superresolution by interferometric imaging. Opt. Express 12(12), 2589–2596 (2004)

    Article  Google Scholar 

  63. P.C. Sun, E.N. Leith, Superresolution by spatial-temporal encoding methods. Appl. Opt. 31(23), 4857–4862 (1992)

    Article  Google Scholar 

  64. J.R. Fienup, Phase-retrieval algorithms for a complicated optical system. Appl. Opt. 32(10), 1737–1746 (1993)

    Article  Google Scholar 

  65. R.W. Gerchberg, A practical algorithm for the determination of phase from image and diffraction plane pictures. Optik (Stuttg). 35, 237 (1972)

    Google Scholar 

  66. T.E. Gureyev, K.A. Nugent, Rapid quantitative phase imaging using the transport of intensity equation. Opt. Commun. 133(1), 339–346 (1997)

    Article  Google Scholar 

  67. J.P. Guigay, Fourier-transform analysis of Fresnel diffraction patterns and in-line holograms, Optik 49(1), 121–125 (1977). Wissenschaftliche Verlag mbH Birkenwaldstrasse 44, Postfach 10 10 61, 70009 Stuttgart, Germany

    Google Scholar 

  68. M. Reed Teague, Deterministic phase retrieval: a Green’s function solution. J. Opt. Soc. Am. 73(11), 1434 (1983)

    Article  Google Scholar 

  69. G.M.R. De Luca et al., Re-scan confocal microscopy: scanning twice for better resolution. Biomed. Opt. Express 4(11), 2644 (2013)

    Article  Google Scholar 

  70. A. Shemer, D. Mendlovic, Z. Zalevsky, J. Garcia, P.G. Martinez, Superresolving optical system with time multiplexing and computer decoding. Appl. Opt. 38(35), 7245–7251 (1999)

    Article  Google Scholar 

  71. T. Arens-Arad, N. Faraha, S. Ben-Yaishc, A. Zlotnikc, Z. Zalevsky, Y. Mandel et al., Head mounted DMD based projection system for natural and prosthetic visual stimulation in freely moving rats. Sci. Rep., no. May, pp. 4–11 (2016)

    Google Scholar 

  72. J. Garcia, Z. Zalevsky, D. Fixler, Synthetic aperture superresolution by speckle pattern projection. Opt. Express 13(16), 6073–6078 (2005)

    Article  Google Scholar 

  73. C. Ventalon, J. Mertz, Quasi-confocal fluorescence sectioning with dynamic speckle illumination. Opt. Lett. 30(24), 3350–3352 (2005)

    Article  Google Scholar 

  74. C. Ventalon, J. Mertz, Dynamic speckle illumination microscopy with translated versus randomized speckle patterns. Opt. Express 14(16), 7198–7209 (2006)

    Article  Google Scholar 

  75. A. Ilovitsh, E. Preter, N. Levanon, Z. Zalevsky, Time multiplexing super resolution using a Barker-based array. Opt. Lett. 40(2), 163–165 (2015)

    Article  Google Scholar 

  76. O. Wagner, A. Schwarz, A. Shemer, C. Ferreira, J. García, Z. Zalevsky, Superresolved imaging based on wavelength multiplexing of projected unknown speckle patterns. Appl. Opt. 54(13), D51 (2015)

    Article  Google Scholar 

  77. N. Meitav, E.N. Ribak, S. Shoham, Point spread function estimation from projected speckle illumination. Light Sci. Appl. 5(3), e16048 (2015)

    Article  Google Scholar 

  78. L. Novotny, B. Hecht, Principles of Nano-optics (Cambridge University Press, Cambridge, 2012)

    Book  Google Scholar 

  79. T. Grotjohann et al., Diffraction-unlimited all-optical imaging and writing with a photochromic GFP. Nature 478(7368), 204–208 (2011)

    Article  Google Scholar 

  80. C. Eggeling, K.I. Willig, S.J. Sahl, S.W. Hell, Lens-based fluorescence nanoscopy. Q. Rev. Biophys. 48(2), 178–243 (2015)

    Article  Google Scholar 

  81. O. Wagner, O. Cheshnovsky, Y. Roichman, A new paradigm for parallelized STED microscopy (2015), arXiv Prepr. arXiv1504.05017

    Google Scholar 

  82. B. Harke, 3D STED microscopy with pulsed and continuous wave lasers (2008)

    Google Scholar 

  83. C. Geisler et al., Resolution of λ/10 in fluorescence microscopy using fast single molecule photo-switching. Appl. Phys. A 88(2), 223–226 (2007)

    Article  Google Scholar 

  84. M.A. Lauterbach et al., Comparing video-rate STED nanoscopy and confocal microscopy of living neurons. J. Biophotonics 3(7), 417–424 (2010)

    Article  Google Scholar 

  85. O. Wagner, Super Resolution with Parallel Scanning Beams Microscope Based on STED. Tel Aviv University, 2012

    Google Scholar 

  86. P. Bingen, M. Reuss, J. Engelhardt, S.W. Hell, Parallelized STED fluorescence nanoscopy. Opt. Express 19(24), 23716–23726 (2011)

    Article  Google Scholar 

  87. A. Chmyrov et al., Nanoscopy with more than 100,000 ‘doughnuts’. Nat. Methods 10(8), 737–740 (2013)

    Article  Google Scholar 

  88. R.J. Vigouroux, M. Belle, A. Chédotal, Neuroscience in the third dimension: shedding new light on the brain with tissue clearing. Mol. Brain 10(1), 33 (2017)

    Article  Google Scholar 

  89. S. Berning, K.I. Willig, H. Steffens, P. Dibaj, S.W. Hell, Nanoscopy in a living mouse brain. Science 335(6068), 551 (2012)

    Article  Google Scholar 

  90. S. Fendl, J. Pujol-Martí, J. Ryan, A. Borst, R. Kasper, STED Imaging in Drosophila Brain Slices. Light Microsc. Methods Protoc. 143–150 (2017)

    Google Scholar 

  91. N.T. Urban, K.I. Willig, S.W. Hell, U.V. Nägerl, STED nanoscopy of actin dynamics in synapses deep inside living brain slices. Biophys. J. 101(5), 1277–1284 (2011)

    Article  Google Scholar 

  92. H. Pinhas, Y. Danan, M. Sinvani, M. Danino, Z. Zalevsky, STED like microscopy based on plasma dispersion effect in silicon, in Imaging and Applied Optics 2017 (3D, AIO, COSI, IS, MATH, pcAOP) (2017), p. CTh3B.5

    Google Scholar 

  93. Y. Danan, T. Ilovitsh, Y. Ramon, D. Malka, D. Liu, Z. Zalevsky, Silicon-coated gold nanoparticles nanoscopy. J. Nanophotonics 10(3), 36015 (2016)

    Article  Google Scholar 

  94. M.J. Rust, M. Bates, X. Zhuang, imaging by stochastic optical reconstruction microscopy (STORM), no. August (2006), pp. 5–7

    Google Scholar 

  95. J.N. Bach, G. Giacomelli, M. Bramkamp, Sample preparation and choice of fluorophores for single and dual color photo-activated localization microscopy (PALM) with bacterial cells. Light Microsc. Methods Protoc. 129–141 (2017)

    Google Scholar 

  96. J. Ryan, A.R. Gerhold, V. Boudreau, L. Smith, P.S. Maddox, Introduction to modern methods in light microscopy. Light Microsc. Methods Protoc. 1–15 (2017)

    Google Scholar 

  97. J. Tønnesen, U.V. Nägerl, Superresolution imaging for neuroscience. Exp. Neurol. 242, 33–40 (2013)

    Article  Google Scholar 

  98. P. Kanchanawong et al., Nanoscale architecture of integrin-based cell adhesions. Nature 468(7323), 580 (2010)

    Article  Google Scholar 

  99. A. Dani, B. Huang, J. Bergan, C. Dulac, X. Zhuang, Superresolution imaging of chemical synapses in the brain. Neuron 68(5), 843–856 (2010)

    Article  Google Scholar 

  100. T. Ilovitsh, B. Jalali, M.H. Asghari, Z. Zalevsky, Phase stretch transform for super-resolution localization microscopy. Biomed. Opt. Express 7(10), 4198 (2016)

    Article  Google Scholar 

  101. F. Huang, S.L. Schwartz, J.M. Byars, K.A. Lidke, Simultaneous multiple-emitter fitting for single molecule super-resolution imaging. Biomed. Opt. Express 2(5), 1377–1393 (2011)

    Article  Google Scholar 

  102. A. Sergé, N. Bertaux, H. Rigneault, D. Marguet, Dynamic multiple-target tracing to probe spatiotemporal cartography of cell membranes. Nat. Methods 5(8), 687–694 (2008)

    Article  Google Scholar 

  103. E. Betzig, A. Lewis, A. Harootunian, M. Isaacson, E. Kratschmer, Near field scanning optical microscopy (NSOM). J. Biophys. 49(1), 269–279 (1986)

    Article  Google Scholar 

  104. F.C. Zanacchi, P. Bianchini, G. Vicidomini, Fluorescence microscopy in the spotlight. Microsc. Res. Tech. 77(7), 479–482 (2014)

    Article  Google Scholar 

  105. E. Sezgin, Super-resolution optical microscopy for studying membrane structure and dynamics (J. Phys. Condens, Matter, 2017)

    Google Scholar 

  106. M. Mivelle, T.S. Van Zanten, C. Manzo, M.F. Garcia-Parajo, Nanophotonic approaches for nanoscale imaging and single-molecule detection at ultrahigh concentrations. Microsc. Res. Tech. 77(7), 537–545 (2014)

    Article  Google Scholar 

  107. R.D. Schaller, J. Ziegelbauer, L.F. Lee, L.H. Haber, R.J. Saykally, Chemically selective imaging of subcellular structure in human hepatocytes with coherent anti-stokes Raman scattering (CARS) near-field scanning optical microscopy (NSOM). J. Phys. Chem. B 106(34), 8489–8492 (2002)

    Article  Google Scholar 

  108. S. Geissbuehler et al., Live-cell multiplane three-dimensional super-resolution optical fluctuation imaging. Nat. Commun. 5, 5830 (2014)

    Article  Google Scholar 

  109. P. Polak, Z. Zalevsky, O. Shefi, Gold nanoparticles-based biosensing of single nucleotide DNA mutations. Int. J. Biol. Macromol. 59, 134–137 (2013)

    Article  Google Scholar 

  110. R. Wilson, The use of gold nanoparticles in diagnostics and detection. Chem. Soc. Rev. 37(9), 2028–2045 (2008)

    Article  Google Scholar 

  111. F. Tam, G.P. Goodrich, B.R. Johnson, N.J. Halas, Plasmonic enhancement of molecular fluorescence. Nano Lett. 7(2), 496–501 (2007)

    Article  Google Scholar 

  112. T. Ilovitsh, Y. Danan, R. Meir, A. Meiri, Z. Zalevsky, Cellular imaging using temporally flickering nanoparticles. Sci. Rep. 5(1), 8244 (2015)

    Article  Google Scholar 

  113. T. Ilovitsh, Y. Danan, R. Meir, A. Meiri, Z. Zalevsky, Cellular superresolved imaging of multiple markers using temporally flickering nanoparticles. Sci. Rep. 5(1), 10965 (2015)

    Article  Google Scholar 

  114. T. Ilovitsh, Y. Danan, A. Ilovitsh, A. Meiri, R. Meir, Z. Zalevsky, Superresolved labeling nanoscopy based on temporally flickering nanoparticles and the K-factor image deshadowing. Biomed. Opt. Express 6(4), 1262 (2015)

    Article  Google Scholar 

  115. X. Zhang, Z. Liu, Superlenses to overcome the diffraction limit. Nat. Mater. 7(6), 435–441 (2008)

    Article  Google Scholar 

  116. I. Epstein, Y. Tsur, A. Arie, Surface-plasmon wavefront and spectral shaping by near-field holography. Laser Photonics Rev. 381(3), 360–381 (2016)

    Article  Google Scholar 

  117. E. Khan, E.E. Narimanov, Hyperstructured illumination in disordered media. Appl. Phys. Lett. 111(5), 51105 (2017)

    Article  Google Scholar 

  118. V.N. Astratov et al., Contact microspherical nanoscopy: from fundamentals to biomedical applications. 10077, 100770S (2017)

    Google Scholar 

  119. Z. Zalevsky, E. Saat, S. Orbach, V. Mico, J. Garcia, Exceeding the resolving imaging power using environmental conditions. Appl. Opt. 47(4), A1 (2008)

    Article  Google Scholar 

  120. Z. Zalevsky, E. Fish, N. Shachar, Y. Vexberg, V. Micó, J. Garcia, Super-resolved imaging with randomly distributed, time- and size-varied particles. J. Opt. A Pure Appl. Opt. 11(8), 85406 (2009)

    Article  Google Scholar 

  121. T. Ilovitsh, A. Ilovitsh, O. Wagner, Z. Zalevsky, Superresolved nanoscopy using Brownian motion of fluorescently labeled gold nanoparticles. Appl. Opt. 56(5), 1365 (2017)

    Article  Google Scholar 

  122. Y.V. Miklyaev, S.A. Asselborn, K.A. Zaytsev, M.Y. Darscht, Superresolution microscopy in far-field by near-field optical random mapping nanoscopy. Appl. Phys. Lett. 105(11), 113103 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zeev Zalevsky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wagner, O., Zalevsky, Z. (2019). Super-Resolving Approaches Suitable for Brain Imaging Applications. In: Kao, FJ., Keiser, G., Gogoi, A. (eds) Advanced Optical Methods for Brain Imaging. Progress in Optical Science and Photonics, vol 5. Springer, Singapore. https://doi.org/10.1007/978-981-10-9020-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-9020-2_11

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-9019-6

  • Online ISBN: 978-981-10-9020-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics