Skip to main content

Stimulated Raman Scattering Microscopy for Brain Imaging: Basic Principle, Measurements, and Applications

  • Chapter
  • First Online:
Advanced Optical Methods for Brain Imaging

Part of the book series: Progress in Optical Science and Photonics ((POSP,volume 5))

Abstract

Stimulated Raman scattering (SRS) microscopy has proven to be a powerful imaging modality over the past decade due to its intrinsic capacity to provide a molecular fingerprint of the target specimen by detecting the vibrational energies associated with its chemical bonds. In fact, SRS automatically avoids the cumbersome process of attaching a fluorophore or fluorescence protein which may alter the intrinsic folding of the molecules due to its larger size and heavier molecular weight. Being a nonlinear imaging technique, SRS also enjoys other advantages such as pinhole-less three-dimensional optical sectioning, non-invasive observation, deep tissue penetration. Additionally, in contrast to coherent anti-Stokes Raman scattering (CARS), which is another coherent Raman technique, SRS signal is identical to spontaneous Raman spectra, linearly dependent on concentration, and free from non-resonant background. In this chapter, the basic principle of SRS microscopy and the corresponding advantages are elucidated. An overview of the advances in SRS measurements is also presented. Specifically, the recent progress in the instrumentation and chemistry related to both label-free and vibrational label-assisted SRS microscopy is reviewed with special emphasis on the brain imaging applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R. Chéreau, J. Tønnesen, U.V. Nägerl, STED microscopy for nanoscale imaging in living brain slices. Methods 88, 57–66 (2015)

    Article  Google Scholar 

  2. A. Dani, B. Huang, J. Bergan, C. Dulac, X. Zhuang, Superresolution imaging of chemical synapses in the brain. Neuron 68(5), 843–856 (2010)

    Article  Google Scholar 

  3. J. Vangindertael, I. Beets, S. Rocha, P. Dedecker, L. Schoofs, K. Vanhoorelbeeke, J. Hofkens, H. Mizuno, Super-resolution mapping of glutamate receptors in C. elegans by confocal correlated PALM. Sci. Rep. 5, 13532 (2015)

    Article  Google Scholar 

  4. K. Horisawa, Specific and quantitative labeling of biomolecules using click chemistry. Front. Physiol. 5, 457 (2014)

    Article  Google Scholar 

  5. H. Yamakoshi et al., Alkyne-tag Raman imaging for visualization of mobile small molecules in live cells. J. Am. Chem. Soc. 134(51), 20681–20689 (2012)

    Article  Google Scholar 

  6. Z. Chen et al., Multicolor live-cell chemical imaging by isotopically edited alkyne vibrational palette. J. Am. Chem. Soc. 136(22), 8027–8033 (2014)

    Article  Google Scholar 

  7. S. Hong et al., Live-cell stimulated Raman scattering imaging of alkyne-tagged biomolecules. Angew. Chem. Int. Edit. 53(23), 5827–5831 (2014)

    Article  Google Scholar 

  8. D.C. Dieterich et al., In situ visualization and dynamics of newly synthesized proteins in rat hippocampal neurons. Nat. Nurosci. 13(7), 897–905 (2010)

    Article  Google Scholar 

  9. M. Boyce, C.R. Bertozzi, Bringing chemistry to life. Nat. Methods 8(8), 638–642 (2011)

    Article  Google Scholar 

  10. L. Wei et al., Live-cell imaging of alkyne-tagged small biomolecules by stimulated Raman scattering. Nat. Methods 11(4), 410–412 (2014)

    Article  Google Scholar 

  11. H. Yamakoshi et al., Imaging of EdU, an alkyne-tagged cell proliferation probe, by Raman microscopy. J. Am. Chem. Soc. 133(16), 6102–6105 (2011)

    Article  Google Scholar 

  12. C.V. Raman, The molecular scattering of light. Nobel Lecture (11 Dec 1930)

    Google Scholar 

  13. C.V. Raman, The molecular scattering of light. Proc. Indian Acad. Sci.-Sect. A 37(3), 342–349 (1953)

    Google Scholar 

  14. J.X. Cheng, X.S. Xie, Coherent anti-Stokes Raman scattering microscopy: instrumentation, theory, and applications. J. Phys. Chem. B 108, 827–840 (2004)

    Article  Google Scholar 

  15. J.X. Cheng, X.S. Xie, Vibrational spectroscopic imaging of living systems: an emerging platform for biology and medicine. Science 350 (6264), aaa8870 (2015)

    Article  Google Scholar 

  16. D. Fu, G. Holtom, C. Freudiger, X. Zhang, X.S. Xie, Hyperspectral imaging with stimulated Raman scattering by chirped femtosecond lasers. J. Phys. Chem. B 117(16), 4634–4640 (2013)

    Article  Google Scholar 

  17. A. Volkmer, Vibrational imaging and microspectroscopies based on coherent anti-Stokes Raman scattering microscopy. J. Phys. D Appl. Phys. 38(5), R59 (2005)

    Article  Google Scholar 

  18. F.K. Lu et al., Label-free neurosurgical pathology with stimulated Raman imaging. Cancer Res. 76(12), 3451–3462 (2016)

    Article  Google Scholar 

  19. D.A. Orringer et al., Rapid intraoperative histology of unprocessed surgical specimens via fibre-laser-based stimulated Raman scattering microscopy. Nat. Biomed. Eng. 1, 0027 (2017)

    Article  Google Scholar 

  20. M. Ji et al., Detection of human brain tumor infiltration with quantitative stimulated Raman scattering microscopy. Sci. Transl. Med. 309(7), 309ra163 (2015)

    Article  Google Scholar 

  21. M.A. Houle et al., Rapid 3D chemical-specific imaging of minerals using stimulated Raman scattering microscopy. J. Raman Spectros. 48(5), 726–735 (2017)

    Article  Google Scholar 

  22. W. Min, C.W. Freudiger, S. Lu, X.S. Xie, Coherent nonlinear optical imaging: beyond fluorescence microscopy. Annu. Rev. Phys. Chem. 62, 507–530 (2011)

    Article  Google Scholar 

  23. C.W. Freudiger, Stimulated Raman Scattering (SRS) Microscopy (Harvard University, ProQuest Dissertations Publishing, 2011)

    Google Scholar 

  24. L. Wei et al., Live-cell bioorthogonal chemical imaging: stimulated Raman scattering microscopy of vibrational probes. Acc. Chem. Res. 49(8), 1494–1502 (2016)

    Article  Google Scholar 

  25. A. Folick, W. Min, M.C. Wang, Label-free imaging of lipid dynamics using coherent anti-stokes Raman Scattering (CARS) and stimulated Raman scattering (SRS) microscopy. Curr. Opin. Genet. Dev. 21(5), 585–590 (2011)

    Article  Google Scholar 

  26. D. Zhang, P. Wang, M.N. Slipchenko, J.X. Cheng, Fast vibrational imaging of single cells and tissues by stimulated Raman scattering microscopy. Acc. Chem. Res. 47(8), 2282–2290 (2014)

    Article  Google Scholar 

  27. P. Nandakumar, A. Kovalev, A. Volkmer, Vibrational imaging based on stimulated Raman scattering microscopy. New J. Phys. 11(3), 033026 (2009)

    Article  Google Scholar 

  28. B. Mallick, A. Lakshmanna, V. Radhalakshmi, S. Umapathy, Design and development of stimulated Raman spectroscopy apparatus using a femtosecond laser system. Curr. Sci. 1551–1559 (2008)

    Google Scholar 

  29. C.W. Freudiger et al., Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy. Science 322(5909), 1857–1861 (2008)

    Article  Google Scholar 

  30. M. Levenson, Introduction to Nonlinear Laser Spectroscopy (Elsevier, 2012)

    Chapter  Google Scholar 

  31. K. Wang, Y. Wang, R. Liang, J. Wang, P. Qiu, Contributed review: a new synchronized source solution for coherent Raman scattering microscopy. Rev. Sci. Instrum. 87(7), 071501 (2016)

    Article  Google Scholar 

  32. H.T. Beier, G.D. Noojin, B.A. Rockwell, Stimulated Raman scattering using a single femtosecond oscillator with flexibility for imaging and spectral applications. Opt. Express 19(20), 18885–18892 (2011)

    Article  Google Scholar 

  33. D.W.P. Zhang, M.N. Slipchenko, D. Ben-Amotz, A.M. Weiner, J.X. Cheng, Quantitative vibrational imaging by hyperspectral stimulated Raman scattering microscopy and multivariate curve resolution analysis. Anal. Chem. 85(1), 98–106 (2012)

    Article  Google Scholar 

  34. Q. Zhan, Y. Zhao, P. Lin, F. Kao, A facile supercontinuum-based method for broadband spectrally resolved stimulated Raman scattering microscopy, in Asia Communications and Photonics Conference, AF1 J-6 (Nov 2013)

    Google Scholar 

  35. E. Ploetz, S. Laimgruber, S. Berner, W. Zinth, P. Gilch, Femtosecond stimulated Raman microscopy. Appl. Phys. B: Lasers Opt. 87(3), 389–393 (2007)

    Article  Google Scholar 

  36. P. Kukura, S. Yoon, R.A. Mathies, Femtosecond stimulated Raman spectroscopy. Anal. Chem. 78(17), 5952–5959 (2006)

    Article  Google Scholar 

  37. P. Kukura, D.W. McCamant, R.A. Mathies, Femtosecond stimulated Raman spectroscopy. Annu. Rev. Phys. Chem. 58, 461–488 (2007)

    Article  Google Scholar 

  38. S. Shim, R.A. Mathies, Generation of narrow-bandwidth picosecond visible pulses from broadband femtosecond pulses for femtosecond stimulated Raman. Appl. Phys. Lett. 89(12), 121124 (2006)

    Article  Google Scholar 

  39. Y. Ozeki et al., High-speed molecular spectral imaging of tissue with stimulated Raman scattering. Nat. Photonics 6(12), 845–851 (2012)

    Article  Google Scholar 

  40. F. Dake, Y. Ozeki, K. Itoh, Principle Confirmation of Stimulated Raman Scattering Microscopy, presented at Optics & Photonics Japan (OPJ2008), 2008 (unpublished)

    Google Scholar 

  41. Y. Ozeki, F. Dake, S.I. Kajiyama, K. Fukui, K. Itoh, Analysis and experimental assessment of the sensitivity of stimulated Raman scattering microscopy. Opt. Express 17(5), 3651–3658 (2009)

    Article  Google Scholar 

  42. B.G. Saar et al., Video-rate molecular imaging in vivo with stimulated Raman scattering. Science 330(6009), 1368–1370 (2010)

    Article  Google Scholar 

  43. F. Saltarelli et al., Broadband stimulated Raman scattering spectroscopy by a photonic time stretcher. Opt. Express 24(19), 21264–21275 (2016)

    Article  Google Scholar 

  44. C.W. Freudiger et al., Highly specific label-free molecular imaging with spectrally tailored excitation-stimulated Raman scattering (STE-SRS) microscopy. Nat. Photonics 5(2), 103–109 (2011)

    Article  Google Scholar 

  45. F.K. Lu et al., Multicolor stimulated Raman scattering microscopy. Mol Phys 110((15-16)), 1927–1932 (2012)

    Article  Google Scholar 

  46. K. Seto, Y. Okuda, E. Tokunaga, T. Kobayashi, Development of a multiplex stimulated Raman microscope for spectral imaging through multi-channel lock-in detection. Rev. Sci. Instrum. 84(8), 083705 (2013)

    Article  Google Scholar 

  47. T. Hellerer, A.M. Enejder, A. Zumbusch, Spectral focusing: high spectral resolution spectroscopy with broad-bandwidth laser pulses. Appl. Phys. Lett. 85(1), 25–27 (2004)

    Article  Google Scholar 

  48. A.F. Pegoraro, A.D. Slepkov, A. Ridsdale, D.J. Moffatt, A. Stolow, Hyperspectral multimodal CARS microscopy in the fingerprint region. J. Biophotonics 7(1–2), 49–58 (2014)

    Article  Google Scholar 

  49. I. Pope, W. Langbein, P. Borri, P. Watson, Live cell imaging with chemical specificity using dual frequency CARS microscopy. Methods Enzymol. 504, 273–291 (2012)

    Google Scholar 

  50. E.R. Andresen, P. Berto, H. Rigneault, Stimulated Raman scattering microscopy by spectral focusing and fiber-generated soliton as Stokes pulse. Opt. Lett. 36(13), 2387–2389 (2011)

    Article  Google Scholar 

  51. M. Tani et al., in Vibrational Spectroscopy, ed. by D.d. Caro (InTech, 2012), pp. 153–168

    Google Scholar 

  52. I. Rocha-Mendoza, W. Langbein, P. Borri, Coherent anti-Stokes Raman microspectroscopy using spectral focusing with glass dispersion. Appl. Phys. Lett. 93(20), 201103 (2008)

    Article  Google Scholar 

  53. M. Andreana et al., Amplitude and polarization modulated hyperspectral stimulated Raman scattering microscopy. Opt. Express 23(22), 28119–28131 (2015)

    Article  Google Scholar 

  54. R. He et al., Stimulated Raman scattering microscopy and spectroscopy with a rapid scanning optical delay line. Opt. Lett. 42(4), 659–662 (2017)

    Article  Google Scholar 

  55. B. Figueroa, Y. Chen, K. Berry, A. Francis, D. Fu, Label-free chemical imaging of latent fingerprints with stimulated Raman Scattering microscopy. Anal. Chem. 89(8), 4468–4473 (2017)

    Article  Google Scholar 

  56. L. Zhang, S. Shen, Z. Liu, M. Ji, Label-free, quantitative imaging of MoS2-nanosheets in live cells with simultaneous stimulated Raman Scattering and transient absorption microscopy. Adv. Biosys. 1(4), 1700013 (2017)

    Article  Google Scholar 

  57. D. Fu, W. Yang, X.S. Xie, Label-free imaging of neurotransmitter acetylcholine at neuromuscular junctions with stimulated Raman Scattering. J. Am. Chem. Soc. 139(2), 583–586 (2016)

    Article  Google Scholar 

  58. D. Fu et al., Quantitative chemical imaging with multiplex stimulated Raman scattering microscopy. J. Am. Chem. Soc. 134(8), 3623–3626 (2012)

    Article  Google Scholar 

  59. C.S. Liao et al., Spectrometer-free vibrational imaging by retrieving stimulated Raman signal from highly scattered photons. Sci. Adv. 1(9), e1500738 (2015)

    Article  Google Scholar 

  60. C.S. Liao et al., Microsecond scale vibrational spectroscopic imaging by multiplex stimulated Raman scattering microscopy. Light: Sci Appl 4:e265 (2015)

    Article  Google Scholar 

  61. Y. Ozeki et al., Stimulated Raman hyperspectral imaging based on spectral filtering of broadband fiber laser pulses. Opt. Lett. 37(3), 431–433 (2012)

    Article  Google Scholar 

  62. Y. Ozeki et al., Label-free observation of tissues by high-speed stimulated Raman spectral microscopy and independent component analysis. Proc. SPIE 8588, 1–858806 (2013)

    Google Scholar 

  63. Y. Ozeki et al., Stimulated Raman scattering microscope with shot noise limited sensitivity using subharmonically synchronized laser pulses. Opt. Express 18(13), 13708–13719 (2010)

    Article  Google Scholar 

  64. J. Réhault et al., Broadband stimulated Raman scattering with Fourier-transform detection. Opt. Express 23(19), 25235–25246 (2015)

    Article  Google Scholar 

  65. K. Wang et al., Time-lens based hyperspectral stimulated Raman scattering imaging and quantitative spectral analysis. J. Biophotonics 6(10), 815–820 (2013)

    Google Scholar 

  66. C.W. Freudiger et al., Stimulated Raman scattering microscopy with a robust fibre laser source. Nat. Photonics 8(2), 153–159 (2014)

    Article  Google Scholar 

  67. T. Ito, Y. Obara, K. Misawa, Single-beam phase-modulated stimulated Raman scattering microscopy with spectrally focused detection. JOSA B 34(5), 1004–1015 (2017)

    Article  Google Scholar 

  68. M.J.B. Moester, F. Ariese, J.F. De Boer, Optimized signal-to-noise ratio with shot noise limited detection in Stimulated Raman Scattering microscopy. J. Eur. Opt. Soc.-Rapid Publ. 10, 15022 (2015)

    Article  Google Scholar 

  69. W. Min, Stimulated Raman Scattering Microscopy. Online material, http://www.castl.uci.edu/sites/default/files/Min%20SS%20presentation.pdf (Date Accessed: 18 Oct 2017)

  70. E.O. Potma, S. Mukamel, X.S. Xie, in Theory of Coherent Raman Scattering, ed. by J.X. Cheng, X.S. Xie (CRC Press/Taylor & Francis Group, LLC, 2013), pp. 3–42

    Google Scholar 

  71. N. Bloembergen, The stimulated Raman effect. Am. J. Phys. 35(11), 989–1023 (1967)

    Article  Google Scholar 

  72. About Lock-In Amplifiers. Stanford Research Systems, http://www.thinksrs.com/downloads/PDFs/ApplicationNotes/AboutLIAs.pdf

  73. R.L. McCreery, in Raman Spectroscopy for Chemical Analysis (Wiley, Hoboken, 2000), pp. 49–71

    Google Scholar 

  74. G. Keiser, Biophotonics: Concepts to Applications (Springer Nature, Singapore, 2016)

    Book  Google Scholar 

  75. A. Owyoung, Coherent Raman gain spectroscopy using CW laser sources. IEEE J. Quantum Elect. 14(3), 192–203 (1978)

    Article  Google Scholar 

  76. G. Eesley, M. Levenson, W. Tolles, Optically heterodyned coherent Raman spectroscopy. IEEE J. Quantum Elect. 14(1), 45–49 (1978)

    Article  Google Scholar 

  77. P.S. Venkataram, Johnson Noise and Shot Noise: The Boltzmann Constant, Absolute Zero, and the Electron Charge. http://web.mit.edu/pshanth/www/johnsonshot_psv1.pdf (2012)

  78. C.J. Sheppard, X. Gan, M. Gu, M. Roy, Handbook of Biological Confocal Microscopy (442–452, 2006)

    Chapter  Google Scholar 

  79. D.B. Murphy, Fundamentals of Light Microscopy and Electronic Imaging (Wiley, New York, 2002)

    Google Scholar 

  80. M.A. Houle, Amélioration de la microscopie “Stimulated Raman Scattering”(SRS) et applications aux sciences de la terre (Doctoral dissertation, Université du Québec, Institut national de la recherche scientifique, http://espace.inrs.ca/5111/1/Houle%2C%20Marie-Andr%C3%A9e.pdf, 2017)

  81. J. Art, Handbook of Biological Confocal Microscopy (Springer US, 2006), pp. 251–264

    Chapter  Google Scholar 

  82. C. Zhang, D. Zhang, J.X. Cheng, Coherent Raman scattering microscopy in biology and medicine. Annu. Rev. Biomed. Eng. 17, 415–445 (2015)

    Article  Google Scholar 

  83. Fundamental Noise and Fundamental Constants. http://courses.washington.edu/phys431/noise/new_noise_old_box.pdf

  84. H. Nyquist, Thermal agitation of electric charge in conductors. Phys. Rev. 32(1), 110 (1928)

    Article  MathSciNet  Google Scholar 

  85. M.N. Slipchenko, R.A. Oglesbee, D. Zhang, W. Wu, J.X. Cheng, Heterodyne detected nonlinear optical imaging in a lock-in free manner. J. Biophotonics 5(10), 801–807 (2012)

    Article  Google Scholar 

  86. Z. Wang, W. Zheng, Z. Huang, Lock-in-detection-free line-scan stimulated Raman scattering microscopy for near video-rate Raman imaging. Opt. Lett. 41(17), 3960–3963 (2016)

    Article  Google Scholar 

  87. G.M. Hieftje, Signal-to-noise enhancement through instrumental techniques. 1. Signals, noise, and S/N enhancement in the frequency domain. Anal. Chem. 44(6), 81A–88A (1972)

    Google Scholar 

  88. C. Freudiger, X.S. Xie, in Theory of Coherent Raman Scattering, ed. by J.X. Cheng, X.S. Xie (CRC Press/Taylor & Francis Group, LLC, 2013), pp. 99–120

    Google Scholar 

  89. D. Zhang, M.N. Slipchenko, J.X. Cheng, Highly sensitive vibrational imaging by femtosecond pulse stimulated Raman loss. J. Phys. Chem. Lett. 2(11), 1248–1253 (2011)

    Article  Google Scholar 

  90. P. Berto, E.R. Andresen, H. Rigneault, Background-free stimulated Raman spectroscopy and microscopy. Phys. Rev. Lett. 112(5), 053905 (2014)

    Article  Google Scholar 

  91. D. Zhang, M.N. Slipchenko, D.E. Leaird, A.M. Weiner, J.X. Cheng, Spectrally modulated stimulated Raman scattering imaging with an angle-to-wavelength pulse shaper. Opt. Express 21(11), 13864–13874 (2013)

    Article  Google Scholar 

  92. M. Rumi, J.W. Perry, Two-photon absorption: an overview of measurements and principles. Adv. Opt. Photonics 2(4), 451–518 (2010)

    Article  Google Scholar 

  93. D. Fu, T. Ye, T.E. Matthews, G. Yurtsever, W.S. Warren, Two-color, two-photon, and excited-state absorption microscopy. J. Biomed. Opt. 12(5), 054004–054004 (2007)

    Article  Google Scholar 

  94. T. Ye, D. Fu, W.S. Warren, Nonlinear absorption microscopy. Photochem. Photobiol. 85(3), 631–645 (2009)

    Article  Google Scholar 

  95. M.C. Fischer, J.W. Wilson, F.E. Robles, W.S. Warren, Invited review article: pump-probe microscopy. Rev. Sci. Instrum. 87(3), 031101 (2016)

    Article  Google Scholar 

  96. P. Samineni, B. Li, J.W. Wilson, W.S. Warren, M.C. Fischer, Cross-phase modulation imaging. Opt. Letters 37(5), 800–802 (2012)

    Google Scholar 

  97. G.P. Agrawal, P.L. Baldeck, R.R. Alfano, Temporal and spectral effects of cross-phase modulation on copropagating ultrashort pulses in optical fibers. Phys. Rev. A 40(9), 5063 (1989)

    Article  Google Scholar 

  98. R.R. Alfano, P.P. Ho, Self-, cross-, and induced-phase modulations of ultrashort laser pulse propagation. IEEE J. Quantum Elect. 24(2), 351–364 (1988)

    Article  Google Scholar 

  99. P.S. Spencer, K.A. Shore, Pump–probe propagation in a passive Kerr nonlinear optical medium. JOSA B 12(1), 67–71 (1995)

    Article  Google Scholar 

  100. K. Ekvall, P. Van der Meulen, C. Dhollande, L.E. Berg, S. Pommert, R. Naskrecki, J.C. Mialocq, Cross phase modulation artifact in liquid phase transient absorption spectroscopy. J. Appl. Phys. 87(5), 2340–2352 (2000)

    Article  Google Scholar 

  101. K. Mawatari, H. Shimizu, T. Kitamori, in Encyclopedia of Microfluidics and Nanofluidics, ed. by D. Li (Springer, Berlin, 2015), pp. 3246–3253

    Google Scholar 

  102. R. Rusconi, L. Isa, R. Piazza, Thermal-lensing measurement of particle thermophoresis in aqueous dispersions. JOSA B 21(3), 605–616 (2004)

    Article  Google Scholar 

  103. J.W. Wilson, P. Samineni, W.S. Warren, M.C. Fischer, Cross-phase modulation spectral shifting: nonlinear phase contrast in a pump-probe microscope. Biomed. Opt. Express. 3(5), 854–862 (2012)

    Article  Google Scholar 

  104. D. Fu, Quantitative chemical imaging with stimulated Raman scattering microscopy. Curr. Opin. Chem. Biol. 39, 24–31 (2017)

    Article  Google Scholar 

  105. W.J. Tipping, M. Lee, A. Serrels, V.G. Brunton, A.N. Hulme, Stimulated Raman scattering microscopy: an emerging tool for drug discovery. Chem. Soc. Rev. 45(8), 2075–2089 (2016)

    Article  Google Scholar 

  106. C.W. Freudiger et al., Multicolored stain-free histopathology with coherent Raman imaging. Lab. Invest. 92(10), 1492 (2012)

    Article  Google Scholar 

  107. W. Dou, D. Zhang, Y. Jung, J.X. Cheng, D.M. Umulis, Label-free imaging of lipid-droplet intracellular motion in early Drosophila embryos using femtosecond-stimulated Raman loss microscopy. Biophys. J. 102(7), 1666–1675 (2012)

    Article  Google Scholar 

  108. L. Wei et al., Super-multiplex vibrational imaging. Nature 544(7651), 465–470 (2017)

    Article  Google Scholar 

  109. C.R. Hu, D. Zhang, M.N. Slipchenko, J.X. Cheng, B. Hu, Label-free real-time imaging of myelination in the Xenopus laevis tadpole by in vivo stimulated Raman scattering microscopy. J. Biomed. Opt. 19(8), 086005 (2014)

    Article  Google Scholar 

  110. J.N. Bentley, M. Ji, X.S. Xie, D.A. Orringer, Real-time image guidance for brain tumor surgery through stimulated Raman scattering microscopy. Expert Rev. Anticancer Ther. 14(4), 359–361 (2014)

    Article  Google Scholar 

  111. H.J. Lee, J.X. Cheng, Imaging chemistry inside living cells by stimulated Raman Scattering microscopy. Methods (2017). https://doi.org/10.1016/j.ymeth.2017.07.020

    Article  Google Scholar 

  112. M. Ji et al., Rapid, label-free detection of brain tumors with stimulated Raman scattering microscopy. Sci. Transl. Med. 5 (201), 201ra119 (2013)

    Article  Google Scholar 

  113. A.H. Fischer, K.A. Jacobson, J. Rose, R. Zeller, Hematoxylin and eosin staining of tissue and cell sections. Cold Spring Harbor Protoc 5, pdb-prot4986 (2008)

    Google Scholar 

  114. W.E. Huang, R.I. Griffiths, I.P. Thompson, M.J. Bailey, A.S. Whiteley, Raman microscopic analysis of single microbial cells. Anal. Chem. 76(15), 4452–4458 (2004)

    Article  Google Scholar 

  115. H.J. van Manen, A. Lenferink, C. Otto, Noninvasive imaging of protein metabolic labeling in single human cells using stable isotopes and Raman microscopy. Anal. Chem. 80(24), 9576–9582 (2008)

    Article  Google Scholar 

  116. M. Bélanger, I. Allaman, P.J. Magistretti, Brain energy metabolism: focus on astrocyte-neuron metabolic cooperation. Cell Metab. 14(6), 724–738 (2011)

    Article  Google Scholar 

  117. I.A. Silver, M. Erecinska, Extracellular glucose concentration in mammalian brain: continuous monitoring of changes during increased neuronal activity and upon limitation in oxygen supply in normo-, hypo-, and hyperglycemic animals. J. Neurosci. 14(8), 5068–5076 (1994)

    Article  Google Scholar 

  118. F. Hu et al., Vibrational imaging of glucose uptake activity in live cells and tissues by stimulated Raman scattering. Angew. Chem. 127(34), 9959–9963 (2015)

    Article  Google Scholar 

  119. L. Wei et al., Imaging complex protein metabolism in live organisms by stimulated Raman scattering microscopy with isotope labeling. ACS Chem. Biol. 10(3), 901–908 (2015)

    Article  Google Scholar 

  120. F. Hu, L. Wei, C. Zheng, Y. Shen, W. Min, Live-cell vibrational imaging of choline metabolites by stimulated Raman scattering coupled with isotope-based metabolic labeling. Analyst 139(10), 2312–2317 (2014)

    Article  Google Scholar 

  121. L. Wei, Y. Yu, Y. Shen, M.C. Wang, W. Min, Vibrational imaging of newly synthesized proteins in live cells by stimulated Raman scattering microscopy. PNAS 110(28), 11226–11231 (2013)

    Article  Google Scholar 

  122. V.M. Ho, J.A. Lee, K.C. Martin, The cell biology of synaptic plasticity. Science 334(6056), 623–628 (2011)

    Article  Google Scholar 

  123. B. Alvarez-Castelao, E.M. Schuman, The regulation of synaptic protein turnover. J. Biol. Chem. 290(48), 28623–28630 (2015)

    Article  Google Scholar 

  124. M.P. Monopoli et al., Temporal proteomic profile of memory consolidation in the rat hippocampal dentate gyrus. Proteomics 11(21), 4189–4201 (2011)

    Article  Google Scholar 

  125. F. Hu, M.R. Lamprecht, L. Wei, B. Morrison, W. Min, Bioorthogonal chemical imaging of metabolic activities in live mammalian hippocampal tissues with stimulated Raman scattering. Sci. Rep. 6, 39660 (2016)

    Article  Google Scholar 

  126. H.N.N. Venkata, S.A. Shigeto, Stable isotope-labeled Raman imaging reveals dynamic proteome localization to lipid droplets in single fission yeast cells. Chem. Biol. 19(11), 1373–1380 (2012)

    Article  Google Scholar 

  127. Y. Shen, F. Xu, L. Wei, F. Hu, W. Min, Live-cell quantitative imaging of proteome degradation by stimulated Raman Scattering. Angew. Chem. Int. Edit. 53(22), 5596–5599 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the Ministry of Science and Technology (MOST), Taiwan, and University Grants Commission (UGC), India, for their support to the biophotonics research projects at NYMU and JBC (UGC Grant No. F.5-376/2014-15/MRP/NERO/2181).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ankur Gogoi or Fu-Jen Kao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gogoi, A., Liang, YC., Keiser, G., Kao, FJ. (2019). Stimulated Raman Scattering Microscopy for Brain Imaging: Basic Principle, Measurements, and Applications. In: Kao, FJ., Keiser, G., Gogoi, A. (eds) Advanced Optical Methods for Brain Imaging. Progress in Optical Science and Photonics, vol 5. Springer, Singapore. https://doi.org/10.1007/978-981-10-9020-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-9020-2_10

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-9019-6

  • Online ISBN: 978-981-10-9020-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics