Skip to main content

Introduction to the Application of the Fracture Mechanics in Wood and Bamboo

  • Chapter
  • First Online:
The Fracture Mechanics of Plant Materials

Abstract

In this chapter, the history of fracture mechanics is introduced, and the difference between fracture mechanics and mechanics of materials is discussed. Then, the application history and research progress of fracture mechanics applied to wood are reviewed. And it is described briefly that although wood and bamboo are both cell body plant materials, the differences in macroscopic and microscopic structure bring wood and bamboo different failure mechanisms corresponding to different study methods. When studied the fracture properties, wood can be treated as orthotropic macro-homogeneous body, while bamboo is composite reinforced by fiber distributed non-uniformly, so meso-mechanics should be used to build mesoscale model to study the fracture of bamboo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Griffith AA (1920) The phenomenon of rupture and flow in solid. Philos Trans R Soc Lond A 221:163–198

    Article  Google Scholar 

  2. Xiang H (2001) Advanced theory of bridge structure. China Communication Press, Beijing (in Chinese)

    Google Scholar 

  3. Gao Q (1986) Engineering fracture mechanics. Chongqing University Press, Chongqing (in Chinese)

    Google Scholar 

  4. Yang G (1995) The disasters of offshore engineering and the environment load. China Offshore Platform 10(5):202–203

    Google Scholar 

  5. Li H, Zhou C (1990) Engineering fracture mechanics. Dalian University of Technology Press, Dalian (in Chinese)

    Google Scholar 

  6. Kuang Z, Ma F (2002) Crack tip fields. Xi’an Jiaotong University Press, Xi’an (in Chinese)

    Google Scholar 

  7. Gordon JE (1968) The new science of strong materials or why you don’t fall through the floor. Penguin Books Limited, Haromondsworth

    Google Scholar 

  8. Porter AW (1964) On the mechanics of fracture in wood. Forest Prod J 8:325–331

    Google Scholar 

  9. Larsen HJ, Gustafsson PJ (1990) The fracture energy of wood in tension perpendicular to the grain. In: 23th CIB-W18 meeting, Lisbon Portugal, p 23-19-2

    Google Scholar 

  10. Stanzl-Tschegg SE, Tschegg EK, Teischinger A (1994) Fracture energy of spruce wood after different drying procedures. Wood Fiber Sci 26:467–478

    Google Scholar 

  11. Ewing PD, Williams JG (1979) Thickness and moisture content effect in the fracture toughness of Scots Pine. J Mater Sci 14(12):2959–2966

    Article  Google Scholar 

  12. Barrett JD, Foschi RO (1977) Model II stress-intensity factors for cracked wood beams. Eng Fract Mech 9(2):371–378

    Article  Google Scholar 

  13. Wu EM (1967) Application of fracture mechanics to anisotropic plates. J Appl Mech 34:967–974

    Article  Google Scholar 

  14. Wu EM (1968) Fracture mechanics of anisotropic plates. In: Tsai SW (ed) Composite material workshop, Technomic Publishing Company, Lancaster, p 23

    Google Scholar 

  15. Mindness S, Nadeau JS, Barrett JD (1976) Stow crack growth in Douglas-fir. Wood Sci 1:389–396

    Google Scholar 

  16. Schnewind AP (1977) Fracture toughness and duration of load factor. Duration factor for cracks propagating perpendicular to grain. Wood Fiber 9(3):216–226

    Google Scholar 

  17. Smith TW, Penny DT (1980) Fracture mechanics of butt joints in laminated wood beams. Wood Sci 12(4):227–235

    Google Scholar 

  18. White MS, Green DW (1980) Effect of substrate on the fracture toughness of wood-adhesive bonds. Wood Sci 12(3):149–153

    Google Scholar 

  19. Triboulot P, Pluvinage G (1984) Validity of fracture mechanics concepts applied to wood by finite element calculation. Wood Sci Technol 18(1):51–58

    Article  Google Scholar 

  20. Boatright SWJ, Garrentt GG (1983) The effect of microstructure and stress state on the fracture behaviour of wood. J Mater Sci 18:2181–2199

    Article  Google Scholar 

  21. Murphy JF (1979) Strength of wood beams with end splits. Research Paper. FPL 347. USDA Forest Service Products Laboratory. Madison, WI, p 12

    Google Scholar 

  22. Foschi RO, Barrett JD (1976) Stress intensity factors in anisotropic plates using singular isoparametric elements. Int J Numer Meth Eng 10(6):1281–1287

    Article  Google Scholar 

  23. Canadaian Stanards Association (1984) Engineering design in wood (working stress design). CAN3-086-M84

    Google Scholar 

  24. Sun Y, Lu Z (1999) Calculation of stress strength factor at crack tip of Fraxinus mandshurica Rupr. by finite element. J Beijing Forest Univ 21(3):53–57 (in Chinese)

    Google Scholar 

  25. Ren H, Jiang Z (2001) Morphology of wood fracture of Chinese Fir and Masson Pine. Scientia Silvae Sinicae 37(3):118–121(in Chinese)

    Google Scholar 

  26. Stefanie E, Stanzl T (2006) Microstructure and fracture mechanical response of wood. Int J Fract 139:495–508

    Article  Google Scholar 

  27. Knuffel WE (1988) Acoustic emission as Strength predictor in structural timber. Holzforschung 42:336–348

    Google Scholar 

  28. Ansell MP (1982) Acoustic Emission from softwood in tension. Wood Sci Technol 16(1):35–58

    Article  Google Scholar 

  29. Sato K, Okano T, Asano I, Fushitani M (1985) Application of AE to mechanical testing of wood. In: 2nd internatioal conference on acoustic emission, Lake Tahoe, pp 240–243

    Google Scholar 

  30. Ogino S, Kaino K, Suzuki M (1986) Prediction of lumber checking during drying by means of acoustic emission technique. J Acoustic Emission 5(2):61–65

    Google Scholar 

  31. Suzuki M, Schniewind AP (1987) Relationship between fracture toughness and acoustic emission during cleavage failure in adhesive joints. Wood Sci Technol 21:121–130

    Article  Google Scholar 

  32. Rice RW, Skarr C (1990) Acoustic emission patterns from the surfaces of red oak wafers under transverse bending stress. Wood Sci Technol 24:123–129

    Article  Google Scholar 

  33. Ando K, Sato K, Fushitani M (1992) Fracturetoughness and acoustic emission Characteristics of Wood II. J Japan Wood Res Soc 38:342–349

    Google Scholar 

  34. Schniewind AP, Quarles SL, Lee H (1996) Wood fracture, acoustic emission, and the drying process Part 1. Acoustic emission associated with fracture. Wood Sci Technol 30:273–281

    Article  Google Scholar 

  35. Dill-Langer G, Aicher S (2000) Monitoring of microfracture by microscopy and acoustic emission. In: International conference on wood and wood fiber composites, Stuttgart, pp 93–104

    Google Scholar 

  36. Aicher S, Höfflin L, Dill-Langer G (2001) Damage evolution and acoustic emission of wood at tension perpendicular to fiber. Holz als Roh Werkst 59:104–116

    Article  Google Scholar 

  37. Reiter A, Stanzl-Tschegg SE, Tschegg EK (2000) Mode I fracture and acoustic emission of softwood and hardwood. Wood Sci Technol 34(5):417–430

    Article  Google Scholar 

  38. Reiter A, Stanzl-Tschegg SE, Tschegg EK (2002) Fracture characteristics of different wood species under Mode I loading perpendicular to the grain. Mater Sci Eng A 332:29–36

    Article  Google Scholar 

  39. Chen Z, Gabbitas B, Hunt D (2006) Monitoring the fracture of wood in torsion using acoustic emission. J Mater Sci 41:3645–3655

    Article  Google Scholar 

  40. Choi N-S, Woo S-C, Rhee K-Y (2007) Effects of fiber orientation on the acoustic emission and fracture characteristics of composite laminates. J Mater Sci 42:1162–1168

    Article  Google Scholar 

  41. Zeng QY, Li SH, Bao XR (1992) Effect of bamboo nodal on mechanical properties of bamboo wood. Sci Silvae Sinica 28(3):247–252 (in Chinese)

    Google Scholar 

  42. Ahmad M, Kamke FA (2005) Analysis of calculate bamboo for structural composite materials: physical and mechanical properties. Wood Sci Technol 39:448–459

    Article  Google Scholar 

  43. Obataya E, Kitin P, Yamauchi H (2007) Bending characteristics of bamboo (Phyllostachys pubescens) with respect to its fiber-foam composite structure. Wood Sci Technol 41:385–400

    Article  Google Scholar 

  44. Xi X, Xi D (1991) Fracture behaviour of bamboo. Mater Sci Progr 5(4):336–341(in Chinese)

    Google Scholar 

  45. Amada S, Untao S (2001) Fracture properties of bamboo. Compos B 32:451–459

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhuoping Shao .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shao, Z., Wang, F. (2018). Introduction to the Application of the Fracture Mechanics in Wood and Bamboo. In: The Fracture Mechanics of Plant Materials. Springer, Singapore. https://doi.org/10.1007/978-981-10-9017-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-9017-2_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-9016-5

  • Online ISBN: 978-981-10-9017-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics