Skip to main content

Exponential Average-Vector-Field Integrator for Conservative or Dissipative Systems

  • Chapter
  • First Online:
Recent Developments in Structure-Preserving Algorithms for Oscillatory Differential Equations
  • 540 Accesses

Abstract

This chapter focuses on discrete gradient integrators intending to preserve the first integral or the Lyapunov function of the original continuous system. Incorporating the discrete gradients with exponential integrators, we discuss a novel exponential integrator for the conservative or dissipative system \(\dot{y}=Q(My+\nabla U(y))\), where Q is a \(d\times d\) real matrix, M is a \(d\times d\) symmetric real matrix and \(U : \mathbb {R}^{d}\rightarrow \mathbb {R}\) is a differentiable function. For conservative systems, the exponential integrator preserves the energy, while for dissipative systems, the exponential integrator preserves the decaying property of the Lyapunov function. Two properties of the new scheme are presented. Numerical experiments demonstrate the remarkable superiority of the new scheme in comparison with other structure-preserving schemes in the recent literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Berland, H., Owren, B., Skaflestad, B.: Solving the nonlinear Schrödinger equations using exponential integrators on the cubic Schrödinger equation. Model. Identif. Control 27, 201–217 (2006)

    Article  Google Scholar 

  2. Berland, H., Skaflestad, B., Wright, W.: EXPINT – A MATLAB package for exponential integrators, ACM Trans. Math. Softw. 33 (2007)

    Article  Google Scholar 

  3. Brugnano, L., Iavernaro, F., Trigiante, D.: Hamiltonian boundary value methods (energy preserving discrete line integral methods). J. Numer. Anal. Ind. Appl. Math. 5, 17–37 (2010)

    MathSciNet  MATH  Google Scholar 

  4. Calvo, M., Laburta, M.P., Montijano, J.I., Rández, L.: Projection methods preserving Lyapunov functions. BIT Numer. Math. 50, 223–241 (2010)

    Article  MathSciNet  Google Scholar 

  5. Celledoni, E., Cohen, D., Owren, B.: Symmetric exponential integrators with an application to the cubic Schrödinger equation. Found. Comp. Math. 8, 303–317 (2008)

    Article  Google Scholar 

  6. Celledoni, E., Grimm, V., McLachlan, R.I., Maclaren, D.I., O’Neale, D., Owren, B., Quispel, G.R.W.: Preserving energy resp. dissipation in numerical PDEs using the “Average Vector Field” method. J. Comput. Phys. 231, 6770–6789 (2012)

    Article  MathSciNet  Google Scholar 

  7. Cieśliński, J.L.: Locally exact modifications of numerical schemes. Comput. Math. Appl. 62, 1920–1938 (2013)

    Article  MathSciNet  Google Scholar 

  8. Cohen, D.: Conservation properties of numerical integrators for highly oscillatory Hamiltonian systems. IMA J. Numer. Anal. 26, 34–59 (2006)

    Article  MathSciNet  Google Scholar 

  9. Cohen, D., Jahnke, T., Lorenz, K., Lubich, C.: Numerical integrators for highly oscillatory Hamiltonian systems: a review. In: Mielke, A. (ed.) Analysis, Modeling and Simulation of Multiscale Problems, pp. 553–576. Springer, Berlin (2006)

    Chapter  Google Scholar 

  10. Cox, S.M., Matthews, P.C.: Exponential time differencing for stiff systems. J. Comput. Phys. 176, 430–455 (2002)

    Article  MathSciNet  Google Scholar 

  11. Deuflhard, P.: A study of extrapolation methods based on multistep schemes without parasitic solutions. Z. Angew. Math. Phys. 30, 177–189 (1979)

    Article  MathSciNet  Google Scholar 

  12. Franco, J.: Runge–Kutta–Nyström methods adapted to the numerical integration of perturbed oscillators. Comput. Phys. Commun. 147, 770–787 (2002)

    Article  Google Scholar 

  13. Furihata, D., Matuso, T.: Discrete Variational Derivative Method: A Structure-Preserving Numerical Method for Partial Differential Equations. Chapman and Hall/CRC, Boca Raton (2010)

    Book  Google Scholar 

  14. Gautschi, W.: Numerical integration of ordinary differential equations based on trigonometric polynomials. Numer. Math. 3, 381–397 (1961)

    Article  MathSciNet  Google Scholar 

  15. Gonzalez, O.: Time integration and discrete Hamiltonian systems. J. Nonlinear Sci. 6, 449–467 (1996)

    Article  MathSciNet  Google Scholar 

  16. Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer, New York (1983)

    Book  Google Scholar 

  17. Hairer, E.: Energy-preserving variant of collocation methods. J. Numer. Anal. Ind. Appl. Math. 5, 73–84 (2010)

    MathSciNet  MATH  Google Scholar 

  18. Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration, vol. XIII, 2nd edn. Springer, Berlin (2006)

    MATH  Google Scholar 

  19. Hernández-Solano, Y., Atencia, M., Joya, G., Sandoval, F.: A discrete gradient method to enhance the numerical behavior of Hopfield networks. Neurocomputing 164, 45–55 (2015)

    Article  Google Scholar 

  20. Hersch, J.: Contribution à la méthode des équations aux différences. Z. Angew. Math. Phys. 9, 129–180 (1958)

    Article  Google Scholar 

  21. Higham, N.J.: Functions of Matrices: Theory and Computation. SIAM, Philadelphia (2008)

    Book  Google Scholar 

  22. Hochbruck, M., Lubich, C., Selhofer, H.: Exponential integrators for large systems of differential equations. SIAM J. Sci. Comput. 19, 1552–1574 (1998)

    Article  MathSciNet  Google Scholar 

  23. Hochbruck, M., Ostermann, A.: Exponential integrators. Acta Numerica 19, 209–286 (2010)

    Article  MathSciNet  Google Scholar 

  24. Kassam, A.K., Trefethen, L.N.: Fourth order time-stepping for stiff PDEs. SIAM. J. Sci. Comput. 26, 1214–1233 (2005)

    Article  MathSciNet  Google Scholar 

  25. Klein, C.: Fourth order time-stepping for low dispersion Korteweg–de Vries and nonlinear Schrödinger equations. Electron. Trans. Numer. Anal. 29, 116–135 (2008)

    MATH  Google Scholar 

  26. Lawson, J.D.: Generalized Runge–Kutta processes for stable systems with large Lipschitz constants. SIAM. J. Numer. Anal. Model. 4, 372–380 (1967)

    Article  MathSciNet  Google Scholar 

  27. Li, Y.W., Wu, X.Y.: Exponential integrators preserving first integrals or Lyapunov functions for conservative or dissipative systems. SIAM J. SCI. Comput. 38, A1876–A1895 (2016)

    Article  MathSciNet  Google Scholar 

  28. Macías-Díaz, J.E., Medina-Ramírez, I.E.: An implicit four-step computational method in the study on the effects of damping in a modified \(\alpha \)-Fermi-Pasta-Ulam medium. Commun. Nonlinear Sci. Numer. Simul. 14, 3200–3212 (2009)

    Article  MathSciNet  Google Scholar 

  29. McLachlan, R.I., Quispel, G.R.W., Robidoux, N.: A unified approach to Hamiltonian systems, Poisson systems, gradient systems, and systems with Lyapunov functions or first integrals. Phys. Rev. Lett. 81, 2399–2411 (1998)

    Article  MathSciNet  Google Scholar 

  30. McLachlan, R.I., Quispel, G.R.W., Robidoux, N.: Geometric integration using dicrete gradients. Philos. Trans. R. Soc. A 357, 1021–1046 (1999)

    Article  Google Scholar 

  31. Pavlov, B.V., Rodionova, O.E.: The method of local linearization in the numerical solution of stiff systems of ordinary differential equations. USSR Comput. Math. Math. Phys. 27, 30–38 (1987)

    Article  Google Scholar 

  32. Wang, B., Wu, X.Y.: A new high precision energy-preserving integrator for system of oscillatory second-order differential equations. Phys. Lett. A 376, 1185–1190 (2012)

    Article  MathSciNet  Google Scholar 

  33. Wu, X.Y., Wang, B., Xia, J.: Explicit symplectic multidimensional exponential fitting modified Runge–Kutta–Nyström methods. BIT Numer. Math. 52, 773–795 (2012)

    Article  Google Scholar 

  34. Yang, H., Wu, X.Y., You, X., Fang, Y.: Extended RKN-type methods for numerical integration of perturbed oscillators. Comput. Phys. Commun. 180, 1777–1794 (2009)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinyuan Wu .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd. And Science Press

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wu, X., Wang, B. (2018). Exponential Average-Vector-Field Integrator for Conservative or Dissipative Systems. In: Recent Developments in Structure-Preserving Algorithms for Oscillatory Differential Equations. Springer, Singapore. https://doi.org/10.1007/978-981-10-9004-2_2

Download citation

Publish with us

Policies and ethics