Skip to main content

Alkali Niobate-Based Piezoelectric Materials

  • Chapter
  • First Online:
  • 1912 Accesses

Abstract

As one of the most promising lead-free candidates, alkali niobate-based piezoelectric ceramics have been investigated for more than fifty years due to their moderate piezoelectricity and high Curie temperature. Several advances are speeding up the research of alkali niobate-based piezoelectric ceramics, and considerable efforts are given to the study of phase boundaries, generating a serial of high d33 values of 400–700 pC/N. This chapter reviews the researches on structure and property of alkali niobate-based ceramics, with a focus on KNN-based ceramics. The phase boundaries, piezoelectric properties, and temperature stability of KNN-based ceramics are systematically discussed with the supporting of advanced physical mechanisms involving phase structure and domain configuration. Finally, the future direction of KNN-based ceramics is outlined, focusing on the balanced development of piezoelectricity and temperature stability.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Jaffe B (2012) Piezoelectric ceramics, vol 3. Elsevier

    Google Scholar 

  2. Liu W, Ren X (2009) Large piezoelectric effect in Pb-free ceramics. Phys Rev Lett 103:257602

    Article  CAS  Google Scholar 

  3. Liu X, Tan X (2016) Giant strains in non-textured (Bi1/2Na1/2)TiO3-based lead-free ceramics. Adv Mater 28:574–578

    Article  CAS  Google Scholar 

  4. Xu K, Li J, Lv X, Wu J, Zhang X, Xiao D, Zhu J (2016) Superior piezoelectric properties in potassium-sodium niobate lead-free ceramics. Adv Mater 28:8519–8523

    Article  CAS  Google Scholar 

  5. Shrout R, Zhang J (2007) Lead-free piezoelectric ceramics: alternatives for PZT? J Electroceram 19:113–126

    Article  CAS  Google Scholar 

  6. Zhang J, Pan Z, Guo F, Liu C, Ning H, Chen B, Xing X (2015) Semiconductor/relaxor 0-3 type composites without thermal depolarization in Bi0.5Na0.5TiO3-based lead-free piezoceramics. Nature Commun 6

    Google Scholar 

  7. Wu J, Xiao D, Zhu J (2015) Potassium-sodium niobate lead-free piezoelectric materials: past, present, and future of phase boundaries. Chem Rev 115:2559–2595

    Article  CAS  Google Scholar 

  8. Matthias T (1949) New ferroelectric crystals. Phys Rev 75:1771

    Article  CAS  Google Scholar 

  9. Vousden P (1951) A study of the unit-cell dimensions and symmetry of certain ferroelectric compounds of niobium and tantalum at room temperature. Acta Crystallogr A 4:373–376

    Article  CAS  Google Scholar 

  10. Vousden P (1951) The structure of ferroelectric sodium niobate at room temperature. Acta Crystallogr A 4:545–551

    Article  CAS  Google Scholar 

  11. Cross E, Nicholson J (1955) LV. The optical and electrical properties of single crystals of sodium niobate. Lond Edinb Dublin Philos Mag J Sci 46:453–466

    Google Scholar 

  12. Shirane G, Newnham R, Pepinsky R (1954) Dielectric properties and phase transitions of NaNbO3 and (Na, K)NbO3. Phys Rev 96:581

    Article  CAS  Google Scholar 

  13. Wu J, Xiao D, Zhu J (2015) Potassium-sodium niobate lead-free piezoelectric ceramics: recent advances and perspectives. J Mater Sci: Mater Electron 26:9297–9308

    CAS  Google Scholar 

  14. Lv X, Wu J, Xiao D, Zhu J, Zhang X (2018) Structural evolution of the R-T phase boundary in KNN-based ceramics. J Am Ceram Soc 101:1191–1200

    Article  CAS  Google Scholar 

  15. Li P, Zhai J, Shen B, Zhang S, Li X, Zhu F, Zhang X (2018) Ultrahigh piezoelectric properties in textured (K, Na)NbO3-based lead-free ceramics. Adv Mater 30:1705171

    Google Scholar 

  16. Gou Q, Zhu J, Wu J, Li F, Jiang L, Xiao D (2018) Microstructure and electrical properties of (1-x)K0.5Na0.5NbO3-xBi0.5Na0.5Zr0.85Sn0.15O3 lead-free ceramics. J Alloys Compd 730:311–317

    Article  CAS  Google Scholar 

  17. Shirane G, Danner H, Pavlovic A, Pepinsky R (1954) Phase transitions in ferroelectric KNbO3. Phys Rev 93:672

    Article  CAS  Google Scholar 

  18. Jaffe B, Cook WR, Jaffe H (1971) Piezoelectric ceramics. Academic, New York

    Google Scholar 

  19. Nakamura K, Oshiki M (1997) Theoretical analysis of horizontal shear mode piezoelectric surface acoustic waves in potassium niobate. Appl Phys Lett 71:3203–3205

    Article  CAS  Google Scholar 

  20. Kakimoto I, Masuda I, Ohsato H (2005) Lead-free KNbO3 piezoceramics synthesized by pressure-less sintering. J Eur Ceram Soc 25:2719–2722

    Article  CAS  Google Scholar 

  21. Nakamura K, Kawamura Y (2000) Orientation dependence of electromechanical coupling factors in KNbO3. IEEE T Ultrason Ferr 47:750–755

    Article  CAS  Google Scholar 

  22. Nakamura K, Tokiwa T, Kawamura Y (2002) Domain structures in KNbO3 crystals and their piezoelectric properties. J Appl Phys 91:9272–9276

    Article  CAS  Google Scholar 

  23. Matthias T, Remeika P (1951) Dielectric properties of sodium and potassium niobates. Phys Rev 82:727

    Article  CAS  Google Scholar 

  24. Wada S, Seike A, Tsurumi T (2001) Poling treatment and piezoelectric properties of potassium niobate ferroelectric single crystals. Jpn J Appl Phys 40:5690

    Article  CAS  Google Scholar 

  25. Shannon T, Prewitt T (1969) Effective ionic radii in oxides and fluorides. Acta Crystallogr Sect B25:925–946

    Article  Google Scholar 

  26. Reisman A, Holtzberg F, Berkenblit M (1959) Metastability in niobate systems. J Am Chem Soc 81:1292–1295

    Article  CAS  Google Scholar 

  27. Kim H, Joung R, Seo T, Hur J, Kim H, Kim Y, Nahm S (2014) Low-temperature sintering and piezoelectric properties of CuO-added KNbO3 ceramics. J Am Ceram Soc 97:3897–3903

    Article  CAS  Google Scholar 

  28. Birol H, Damjanovic D, Setter N (2005) Preparation and characterization of KNbO3 ceramics. J Am Ceram Soc 88:1754–1759

    Article  CAS  Google Scholar 

  29. Nagata H, Matsumoto K, Hirosue T, Hiruma Y, Takenaka T (2007) Fabrication and electrical properties of potassium niobate ferroelectric ceramics. Jpn J Appl Phys 46:7084

    Article  CAS  Google Scholar 

  30. Nagata H, Sato S, Hiruma Y, Takenaka T (2012) Fabrication of dense KNbO3 ceramics derived from KHCO3 as a starting material. Appl Phys Express 5:011502

    Article  CAS  Google Scholar 

  31. Ge H, Hou Y, Rao X, Zhu M, Wang H, Yan H (2011) The investigation of depoling mechanism of densified KNbO3 piezoelectric ceramic. Appl Phys Lett 99:032905

    Article  CAS  Google Scholar 

  32. Kim H, Joung R, Seo T, Hur J, Kim H, Kim Y, Nahm S (2014) Influence of sintering conditions on piezoelectric properties of KNbO3 ceramics. J Eur Ceram Soc 34:4193–4200

    Article  CAS  Google Scholar 

  33. Matsumoto K, Hiruma Y, Nagata H, Takenaka T (2006) Piezoelectric properties of pure and Mn-doped potassium niobate ferroelectric ceramics. Jpn J Appl Phys 45:4479

    Article  CAS  Google Scholar 

  34. Yoshida T, Nagata H, Takenaka T (2006) Processing and electrical properties of KNbO3 ferroelectric dense ceramics added with small amount of Bi2O3 and MnCO3. Key Eng Mater 301:19–22

    Article  CAS  Google Scholar 

  35. Lv X, Li Z, Wu J, Xiao D, Zhu J (2016) Lead-free KNbO3:xZnO composite ceramics. ACS Appl Mater Interfaces 8:30304–30311

    Article  CAS  Google Scholar 

  36. Kakimoto I, Masuda I, Ohsato H (2003) Ferroelectric and piezoelectric properties of KNbO3 ceramics containing small amounts of LaFeO3. Jpn J Appl Phys 42:6102

    Article  CAS  Google Scholar 

  37. Grinberg I, West V, Torres M, Gou G, Stein M, Wu L, Spanier E (2013) Perovskite oxides for visible-light-absorbing ferroelectric and photovoltaic materials. Nature 503:509–512

    Article  CAS  Google Scholar 

  38. Matsumoto K, Hiruma Y, Nagata H, Takenaka T (2008) Electric-field-induced strain in Mn-doped KNbO3 ferroelectric ceramics. Ceram Int 34:787–791

    Article  CAS  Google Scholar 

  39. Feng Z, Ren X (2007) Aging effect and large recoverable electrostrain in Mn-doped KNbO3-based ferroelectrics. Appl Phys Lett 91:032904

    Article  CAS  Google Scholar 

  40. Kim H, Kim H, Lee H, Lee H, Lee G, Kim Y, Ryu J (2016) Large electrostrain in K(Nb1-xMnx)O3 lead-free piezoelectric ceramics. J Am Ceram Soc 99:4031–4038

    Article  CAS  Google Scholar 

  41. Tan X, Xu Z, Liu X, Fan Z (2018) Double hysteresis loops at room temperature in NaNbO3-based lead-free antiferroelectric ceramics. Mater Res Lett 6:159–164

    Article  CAS  Google Scholar 

  42. Megaw D (1974) The seven phases of sodium niobate. Ferroelectrics 7:87–89

    Article  CAS  Google Scholar 

  43. Wada T, Tsuji K, Saito T, Matsuo Y (2003) Ferroelectric NaNbO3 ceramics fabricated by spark plasma sintering. Jpn J Appl Phys 42:6110

    Article  CAS  Google Scholar 

  44. Chao L, Hou Y, Zheng M, Yue Y, Zhu M (2017) Macroscopic ferroelectricity and piezoelectricity in nanostructured NaNbO3 ceramics. Appl Phys Lett 110:122901

    Article  CAS  Google Scholar 

  45. Kubacki J, Molak A, Talik E (2001) Electronic structure of NaNbO3-Mn single crystals. J Alloys Compd 328:156–161

    Article  CAS  Google Scholar 

  46. Zuo R, Qi H, Fu J, Li J, Shi M, Xu Y (2016) Giant electrostrictive effects of NaNbO3-BaTiO3 lead-free relaxor ferroelectrics. Appl Phys Lett 108:232904

    Article  CAS  Google Scholar 

  47. Zuo R, Qi H, Fu J (2016) Morphotropic NaNbO3-BaTiO3-CaZrO3 lead-free ceramics with temperature-insensitive piezoelectric properties. Appl Phys Lett 109:022902

    Article  CAS  Google Scholar 

  48. Qi H, Zuo R, Fu J, Dou M (2017) Thermally stable electrostrains of morphotropic 0.875NaNbO3-0.1BaTiO3-0.025CaZrO3 lead-free piezoelectric ceramics. Appl Phys Lett 110:112903

    Article  CAS  Google Scholar 

  49. Li F, Wang K, Zhu Y, Cheng Q, Yao Z (2013) (K, Na)NbO3-based lead-free piezoceramics: fundamental aspects, processing technologies, and remaining challenges. J Am Ceram Soc 96:3677–3696

    Article  CAS  Google Scholar 

  50. Yin J, Wu J, Wang H (2017) Composition dependence of electrical properties in (1-x)KNbO3-xNaNbO3 lead-free ceramics. J Mater Sci: Mater Electron 28:4828–4838

    CAS  Google Scholar 

  51. Egerton L, Dillon M (1959) Piezoelectric and dielectric properties of ceramics in the system potassium-sodium niobate. J Am Ceram Soc 42:438–442

    Article  CAS  Google Scholar 

  52. Saito Y, Takao H, Tani T, Nonoyama T, Takatori K, Homma T, Nakamura M (2004) Lead-free piezoceramics. Nature 432:84–87

    Article  CAS  Google Scholar 

  53. Guo Y, Kakimoto I, Ohsato H (2004) Phase transitional behavior and piezoelectric properties of (Na0.5K0.5)NbO3-LiNbO3 ceramics. Appl Phys Lett 85:4121–4123

    Article  CAS  Google Scholar 

  54. Lv X, Li Z, Wu J, Xi J, Gong M, Xiao D, Zhu J (2016) Enhanced piezoelectric properties in potassium-sodium niobate-based ternary ceramics. Mater Design 109:609–614

    Article  CAS  Google Scholar 

  55. Wang X, Wu J, Xiao D, Zhu J, Cheng X, Zheng T, Wang X (2014) Giant piezoelectricity in potassium-sodium niobate lead-free ceramics. J Am Chem Soc 136:2905–2910

    Article  CAS  Google Scholar 

  56. Wu G, Wang P, Cheng J, Xiao Q, Zhu G High-piezoelectricity (1-x)(K1-yNay)(Nb1-zSbz)O3 + xBi0.5(Na1-uKu)0.5ZrO3 lead-free ceramics and their preparation method. Chinese Patent, CN103482977A

    Google Scholar 

  57. Cheng X, Wu J, Lou X, Wang X, Wang X, Xiao D, Zhu J (2014) Achieving both giant d33 and high TC in potassium-sodium niobate ternary system. ACS Appl Mater Interfaces 6:750–756

    Article  CAS  Google Scholar 

  58. Cheng X, Wu J, Wang X, Zhang B, Lou X, Wang X, Zhu J (2013) Mediating the contradiction of d33 and TC in potassium-sodium niobate lead-free piezoceramics. ACS Appl Mater Interfaces 5:10409–10417

    Article  CAS  Google Scholar 

  59. Wang X, Wu J, Xiao D, Cheng X, Zheng T, Lou X, Zhu J (2014) New potassium-sodium niobate ceramics with a giant d33. ACS Appl Mater Interfaces 6:6177–6180

    Article  CAS  Google Scholar 

  60. Cheng X, Wu J, Wang X, Zhang B, Zhu J, Xiao D, Lou X (2014) New lead-free piezoelectric ceramics based on (K0.48Na0.52)(Nb0.95Ta0.05)O3-Bi0.5(Na0.7K0.2Li0.1)0.5ZrO3. Dalton T 43:3434–3442

    Article  CAS  Google Scholar 

  61. Wu J, Wang X, Cheng X, Zheng T, Zhang B, Xiao D, Lou X (2014) New potassium-sodium niobate lead-free piezoceramic: giant-d33 vs. sintering temperature. J Appl Phys 115:114104

    Article  CAS  Google Scholar 

  62. Zheng T, Wu J, Xiao D, Zhu J (2015) Giant d33 in nonstoichiometric (K, Na)NbO3-based lead-free ceramics. Scripta Mater 94:25–27

    Article  CAS  Google Scholar 

  63. Wu J, Wang Y (2014) Two-step sintering of new potassium sodium niobate ceramics: a high d33 and wide sintering temperature range. Dalton T 43:12836–12841

    Article  CAS  Google Scholar 

  64. Wu J, Xiao J, Zheng T, Wang X, Cheng X, Zhang B, Zhu J (2014) Giant piezoelectricity of (K, Na)(Nb, Sb)O3-(Bi, Na, K, Pb)ZrO3 ceramics with rhombohedral-tetragonal (RT) phase boundary. Scripta Mater 88:41–44

    Article  CAS  Google Scholar 

  65. Wang X, Wu J, Lv X, Tao H, Cheng X, Zheng T, Zhu J (2014) Phase structure, piezoelectric properties, and stability of new K0.48Na0.52NbO3-Bi0.5Ag0.5ZrO3 lead-free ceramics. J Mater Sci: Mater Electron 25:3219–3225

    CAS  Google Scholar 

  66. Zheng T, Wu J, Cheng X, Wang X, Zhang B, Xiao D, Lou X (2014) Wide phase boundary zone, piezoelectric properties, and stability in 0.97(K0.4Na0.6)(Nb1-xSbx)O3-0.03Bi0.5Li0.5ZrO3 lead-free ceramics. Dalton T 43:9419–9426

    Article  CAS  Google Scholar 

  67. Wu J, Wang Y, Xiao D, Zhu J, Pu Z (2007) Effects of Ag content on the phase structure and piezoelectric properties of (K0.44-xNa0.52Li0.04Agx)(Nb0.91Ta0.05Sb0.04)O3 lead-free ceramics. Appl Phys Lett 91:132914

    Article  CAS  Google Scholar 

  68. Wang K, Li F (2010) Domain engineering of lead-free Li-modified (K, Na)NbO3 polycrystals with highly enhanced piezoelectricity. Adv Funct Mater 20:1924–1929

    Article  CAS  Google Scholar 

  69. Zhang B, Wu J, Cheng X, Wang X, Xiao D, Zhu J, Lou X (2013) Lead-free piezoelectrics based on potassium-sodium niobate with giant d33. ACS Appl Mater Interfaces 5:7718–7725

    Article  CAS  Google Scholar 

  70. Cheng X, Wu J, Wang X, Zhang B, Zhu J, Xiao D, Lou X (2013) Giant d33 in (K, Na)(Nb, Sb)O3-(Bi, Na, K, Li)ZrO3 based lead-free piezoelectrics with high Tc. Appl Phys Lett 103:052906

    Article  CAS  Google Scholar 

  71. Wang Z, Xiao D, Wu J, Xiao M, Li F, Zhu J (2014) New lead-free (1-x)(K0.5Na0.5)NbO3-x(Bi0.5Na0.5)ZrO3 ceramics with high piezoelectricity. J Am Ceram Soc 97:688–690

    Article  CAS  Google Scholar 

  72. Guo Y, Kakimoto I, Ohsato H (2005) (Na0.5K0.5)NbO3-LiTaO3 lead-free piezoelectric ceramics. Mater Lett 59:241–244

    Article  CAS  Google Scholar 

  73. Rödel J, Jo W, Seifert T, Anton M, Granzow T, Damjanovic D (2009) Perspective on the development of lead-free piezoceramics. J Am Ceram Soc 92:1153–1177

    Article  CAS  Google Scholar 

  74. Du H, LuoF QuS, Pei Z, Zhu D, Zhou W (2007) Phase structure, microstructure, and electrical properties of bismuth modified potassium-sodium niobium lead-free ceramics. J Appl Phys 102:054102

    Article  CAS  Google Scholar 

  75. Damjanovic D (2009) Comments on origins of enhanced piezoelectric properties in ferroelectrics. IEEE T Ultrason Ferr 56:1574–1585

    Article  Google Scholar 

  76. Dai Y, Zhang X, Zhou G (2007) Phase transitional behavior in K0.5Na0.5NbO3-LiTaO3 ceramics. Appl Phys Lett 90:262903

    Article  CAS  Google Scholar 

  77. Klein N, Hollenstein E, Damjanovic D, Trodahl J, Setter N, Kuball M (2007) A study of the phase diagram of (K, Na, Li)NbO3 determined by dielectric and piezoelectric measurements, and Raman spectroscopy. J Appl Phys 102:014112

    Article  CAS  Google Scholar 

  78. Hollenstein E, Davis M, Damjanovic D, Setter N (2005) Piezoelectric properties of Li-and Ta-modified (K0.5Na0.5)NbO3 ceramics. Appl Phys Lett 87:182905

    Article  CAS  Google Scholar 

  79. Shen Y, Li M, Jiang L, Li R, WangM Hong Y, Liao H (2011) Phase transition and electrical properties of LiNbO3-modified K0.49Na0.51NbO3 lead-free piezoceramics. J Mater Sci: Mater Electron 22:1071–1075

    CAS  Google Scholar 

  80. Wang K, Li F, Liu N (2008) Piezoelectric properties of low-temperature sintered Li-modified (Na, K)NbO3 lead-free ceramics. Appl Phys Lett 93:092904

    Article  CAS  Google Scholar 

  81. Du H, Zhou W, Luo F, Zhu D, Qu S, Pei Z (2007) An approach to further improve piezoelectric properties of (K0.5Na0.5)NbO3-based lead-free ceramics. Appl Phys Lett 91:202907

    Google Scholar 

  82. Wongsaenmai S, Ananta S, Yimnirun R (2012) Effect of Li addition on phase formation behavior and electrical properties of (K0.5Na0.5)NbO3 lead free ceramics. Ceram Int 38:147–152

    Article  CAS  Google Scholar 

  83. Kakimoto I, Akao K, Guo Y, Ohsato H (2005) Raman scattering study of piezoelectric (Na0.5K0.5)NbO3-LiNbO3 ceramics. Jpn J Appl Phys 44:7064

    Article  CAS  Google Scholar 

  84. Du H, Tang F, Liu D, Zhu D, Zhou W, Qu S (2007) The microstructure and ferroelectric properties of (K0.5Na0.5)NbO3-LiNbO3 lead-free piezoelectric ceramics. Mater Sci Eng B136:165–169

    Article  CAS  Google Scholar 

  85. Song C, Cho H, Park Y, Ahn W, Nahm S, Uchino K, Lee G (2007) Microstructure and piezoelectric properties of (1-x)(Na0.5K0.5)NbO3-xLiNbO3 ceramics. J Am Ceram Soc 90:1812–1816

    Article  CAS  Google Scholar 

  86. Zhang S, Xia R, Shrout R (2007) Lead-free piezoelectric ceramics vs. PZT? J Electroceram 19:251–257

    Article  CAS  Google Scholar 

  87. Aksel E, Jones L (2010) Advances in lead-free piezoelectric materials for sensors and actuators. Sensors 10:1935–1954

    Article  CAS  Google Scholar 

  88. Wang K, Li F (2007) Analysis of crystallographic evolution in (Na, K)NbO3-based lead-free piezoceramics by x-ray diffraction. Appl Phys Lett 91:262902

    Article  CAS  Google Scholar 

  89. Du H, Tang F, Luo F, Zhu D, Qu S, Pei Z, Zhou W (2007) Influence of sintering temperature on piezoelectric properties of (K0.5Na0.5)NbO3-LiNbO3 lead-free piezoelectric ceramics. Mater Res Bull 42:1594–1601

    Article  CAS  Google Scholar 

  90. Du H, Tang F, Luo F, Zhou W, Qu S, Pei Z (2007) Effect of poling condition on piezoelectric properties of (K0.5Na0.5)NbO3-LiNbO3 lead-free piezoelectric ceramics. Mater Sci Eng, B 137:175–179

    Article  CAS  Google Scholar 

  91. Zhao P, Zhang P, Li F (2007) High piezoelectric d33 coefficient in Li-modified lead-free (Na, K)NbO3 ceramics sintered at optimal temperature. Appl Phys Lett 90:242909

    Article  CAS  Google Scholar 

  92. Wang K, Li F, Zhou J (2011) High normalized strain obtained in Li-modified (K, Na)NbO3 lead-free piezoceramics. Appl Phys Express 4:061501

    Article  CAS  Google Scholar 

  93. Chae S, Koh H (2012) Effects of Ag2O dopants on the piezoelectric properties of 0.94(K0.5Na0.5)NbO3-0.06LiNbO3 ceramics. J Korean Phys Soc 60:280–283

    Article  CAS  Google Scholar 

  94. Azough F, Wegrzyn M, Freer R, Sharma S, Hall D (2011) Microstructure and piezoelectric properties of CuO added (K, Na, Li)NbO3 lead-free piezoelectric ceramics. J Eur Ceram Soc 31:569–576

    Article  CAS  Google Scholar 

  95. Chen K, Xu G, Yang D, Wang X, Li J (2007) Dielectric and piezoelectric properties of lead-free 0.95(K0.5Na0.5)NbO3-0.05LiNbO3 crystals grown by the Bridgman method. J Appl Phys 101:044103

    Article  CAS  Google Scholar 

  96. Zhang S, Xia R, Shrout R, Zang G, Wang J (2006) Piezoelectric properties in perovskite 0.948(K0.5Na0.5)NbO3-0.052LiSbO3 lead-free ceramics. J Appl Phys 100:104108

    Article  CAS  Google Scholar 

  97. Wu J, Wang Y, Xiao D, Zhu J, Yu P, Wu L, Wu W (2007) Piezoelectric properties of LiSbO3-modified (K0.48Na0.52)NbO3 lead-free ceramics. Jpn J Appl Phys 46:7375

    Article  CAS  Google Scholar 

  98. Lin D, Kwok W, Lam H, Chan L (2007) Structure and electrical properties of K0.5Na0.5NbO3-LiSbO3 lead-free piezoelectric ceramics. J Appl Phys 101:074111

    Article  CAS  Google Scholar 

  99. Li M, Shen Y, Jiang L, Wu F, Wang M, Hong Y, Liao H (2011) Microstructure, phase transition and electrical properties of LiSbO3-doped (K0.49Na0.51)NbO3 lead-free piezoelectric ceramics. J Mater Sci: Mater Electron 22:1409–1414

    CAS  Google Scholar 

  100. Wu J, Xiao D, Wang Y, Wu W, Zhang B, Zhu J (2008) Improved temperature stability of CaTiO3-modified [(K0.5Na0.5)0.96Li0.04](Nb0.91Sb0.05Ta0.04)O3 lead-free piezoelectric ceramics. J Appl Phys 104:024102

    Article  CAS  Google Scholar 

  101. Wu J, Xiao D, Wang Y, Zhu J, Yu P, Jiang Y (2007) Compositional dependence of phase structure and electrical properties in (K0.42Na0.58)NbO3-LiSbO3 lead-free ceramics. J Appl Phys 102:114113

    Article  CAS  Google Scholar 

  102. Zang Z, Wang F, Chen C, Su B, Wang M, Qi P, Shrout R (2006) Perovskite (Na0.5K0.5)1-x(LiSb)xNb1-xO3 lead-free piezoceramics. Appl Phys Lett 88(21):212908

    Article  CAS  Google Scholar 

  103. Palei P, Kumar P (2012) Dielectric ferroelectric and piezoelectric properties of (1-x)[K0.5Na0.5NbO3]-x[LiSbO3] ceramics. J Phys Chem Solids 73:827–833

    Article  CAS  Google Scholar 

  104. Zhao Y, Huang R, Liu R, Wang X, Zhou H (2013) Enhanced dielectric and piezoelectric properties in Li/Sb-modified (Na, K)NbO3 ceramics by optimizing sintering temperature. Ceram Int 39:425–429

    Article  CAS  Google Scholar 

  105. Li H, Shih Y, Shih H (2007) Effect of antimony concentration on the crystalline structure, dielectric, and piezoelectric properties of (Na0.5K0.5)0.945Li0.055Nb1-xSbxO3 solid solutions. J Am Ceram Soc 90:3070–3072

    Article  CAS  Google Scholar 

  106. Wang Y, Damjanovic D, Klein N, Hollenstein E, Setter N (2007) Compositional inhomogeneity in Li- and Ta-modified (K, Na)NbO3 ceramics. J Am Ceram Soc 90:3485–3489

    Article  CAS  Google Scholar 

  107. Chang Y, Yang P, Ma D, Liu Z, Wang Z (2008) Phase transitional behavior, microstructure, and electrical properties in Ta-modified [(K0.458Na0.542)0.96Li0.04]NbO3 lead-free piezoelectric ceramics. J Appl Phys 104:024109

    Article  CAS  Google Scholar 

  108. Saito Y, Takao H (2006) High performance lead-free piezoelectric ceramics in the (K, Na)NbO3-LiTaO3 solid solution system. Ferroelectrics 338:17–32

    Article  CAS  Google Scholar 

  109. Zhang L, Zong J, Wu L, Gao Y, Zheng P, Shao F (2009) Polymorphic phase transition and excellent piezoelectric performance of (K0.55Na0.45)0.965Li0.035Nb0.80Ta0.20O3 lead-free ceramics. Appl Phys Lett 95:022909

    Article  CAS  Google Scholar 

  110. Shen Y, Wang K, Li F (2009) Combined effects of Li content and sintering temperature on polymorphic phase boundary and electrical properties of Li/Ta co-doped (Na, K)NbO3 lead-free piezoceramics. Appl Phys A: Mater 97:911–917

    Article  CAS  Google Scholar 

  111. Zhao P, Tu R, Goto T, Zhang P, Yang S (2008) Effect of Ta content on phase structure and electrical properties of piezoelectric lead-free [(Na0.535K0.480)0.942Li0.058](Nb1-xTax)O3 ceramics. J Am Ceram Soc 91:3440–3443

    Article  CAS  Google Scholar 

  112. Kim S, Jeong J, Song S (2007) Microstructures and piezoelectric properties in the Li2O-excess 0.95(Na0.5K0.5)NbO3-0.05LiTaO3 ceramics. J Am Ceram Soc 90:3338–3340

    Article  CAS  Google Scholar 

  113. Lin D, Kwok W, Chan L (2007) Microstructure, phase transition, and electrical properties of (K0.5Na0.5)1-xLix(Nb1−yTay)O3 lead-free piezoelectric ceramics. J Appl Phys 102:034102

    Article  CAS  Google Scholar 

  114. Lee K, Cho H, Kim I, Kim S (2012) Strain characteristics and electrical properties of [Li0.055(K0.5Na0.5)0.945](Nb1-xTax)O3 ceramics. J Ceram Process Res 13:S341–S345

    Google Scholar 

  115. Zhao P, Zhang P, Li F (2007) Enhancing piezoelectric d33 coefficient in Li/Ta-codoped lead-free (Na, K)NbO3 ceramics by compensating Na and K at a fixed ratio. Appl Phys Lett 91:172901

    Article  CAS  Google Scholar 

  116. Cho J, Kim H, Song K, Lee S, Jeon H (2013) Piezoelectric and ferroelectric properties of textured (Na0.50K0.47Li0.03)(Nb0.8Ta0.2)O3 ceramics by using template grain growth method. J Electroceram 30:72–76

    Article  CAS  Google Scholar 

  117. Zuo R, Fu J, Lv D, Liu Y (2010) Antimony tuned rhombohedral-orthorhombic phase transition and enhanced piezoelectric properties in sodium potassium niobate. J Am Ceram Soc 93:2783–2787

    Article  CAS  Google Scholar 

  118. Lv G, Wang L, Zhang L, Wu L, Zhao L, Xu J (2009) Tantalum influence on physical properties of (K0.5Na0.5)(Nb1-xTax)O3 ceramics. Mater Res Bull 44:284–287

    Article  CAS  Google Scholar 

  119. Yang Z, Chang Y, Liu B, Wei L (2006) Effects of composition on phase structure, microstructure and electrical properties of (K0.5Na0.5)NbO3-LiSbO3 ceramics. Mater Sci Eng, A 432:292–298

    Article  CAS  Google Scholar 

  120. Wu J, Xiao D, Wang Y, Zhu J, Wu L, Jiang Y (2007) Effects of K/Na ratio on the phase structure and electrical properties of (KxNa0.96-xLi0.04)(Nb0.91Ta0.05Sb0.04)O3 lead-free ceramics. Appl Phys Lett 91:252907

    Article  CAS  Google Scholar 

  121. Akdoğan K, Kerman K, Abazari M, Safari A (2008) Origin of high piezoelectric activity in ferroelectric (K0.44Na0.52Li0.04)-(Nb0.84Ta0.1Sb0.06)O3 ceramics. Appl Phys Lett 92:112908

    Article  CAS  Google Scholar 

  122. Gao Y, Zhang J, Qing Y, Tan Y, Zhang Z, Hao X (2011) Remarkably strong piezoelectricity of lead-free (K0.45Na0.55)0.98Li0.02(Nb0.77Ta0.18Sb0.05)O3 ceramic. J Am Ceram Soc 94:2968–2973

    Article  CAS  Google Scholar 

  123. Zuo R, Fu J, Lv D (2009) Phase transformation and tunable piezoelectric properties of lead-free (Na0.52K0.48-xLix)(Nb1-x-ySbyTax)O3 system. J Am Ceram Soc 92:283–285

    Article  CAS  Google Scholar 

  124. Du J, Zang Z, Yi X, Xu J, Chu Q, Ban L, Wang M (2012) Structural, dielectric and piezoelectric features of (Na0.52K0.44Li0.04)Nb0.87Sb0.08Ta0.05O3 ceramics. Mater Lett 79:89–91

    Article  CAS  Google Scholar 

  125. Du J, Wang J, Zang G, Yi X (2011) Phase transition behavior and piezoelectric properties of low-Li and high-Sb modified KNN based piezoceramics. Phys B 406:4077–4079

    Article  CAS  Google Scholar 

  126. Fu J, Zuo R, Lv D, Liu Y, Wu Y (2010) Structure and piezoelectric properties of lead-free (Na0.52K0.44-x)(Nb0.95-xSb0.05)O3-xLiTaO3 ceramics. J Mater Sci: Mater Electron 21:241–245

    CAS  Google Scholar 

  127. Ming Q, Wang F, Qi P, Zang Z (2007) Piezoelectric properties of (Li, Sb, Ta) modified (Na, K)NbO3 lead-free ceramics. J Appl Phys 101:054103

    Article  CAS  Google Scholar 

  128. Pang X, Qiu J, Zhu K, Shao B (2011) Influence of sintering temperature on piezoelectric properties of (K0.4425Na0.52Li0.0375)(Nb0.8925Sb0.07Ta0.0375)O3 lead-free piezoelectric ceramics. J Mater Sci: Mater Electron 22:1783–1787

    CAS  Google Scholar 

  129. Yoo J (2012) Dielectric and piezoelectric properties of lead-free (Li, Na, K)(Nb, Ta, Sb)O3 system ceramics as a function of calcination temperature. Ferroelectrics 437:81–87

    Article  CAS  Google Scholar 

  130. Du H, Huang Y, Tang H, Feng W, Qin H, Lu X (2013) Structure and electrical properties of [(K0.49Na0.51)1-xLix](Nb0.90Ta0.04Sb0.06)O3 lead-free piezoceramics. Ceram Int 39:5689–5694

    Article  CAS  Google Scholar 

  131. Wu J, Peng T, Wang Y, Xiao D, Zhu J, Jin Y, Jiang Y (2008) Phase structure and electrical properties of (K0.48Na0.52)(Nb0.95Ta0.05)O3-LiSbO3 lead-free piezoelectric ceramics. J Am Ceram Soc 91:319–321

    Article  CAS  Google Scholar 

  132. Wang Y, Wu J, Xiao D, Zhu J, Jin Y, Zhu J, Li X (2007) Microstructure, dielectric, and piezoelectric properties of (Li, Ag, Ta) modified (K0.50Na0.50)NbO3 lead-free ceramics with high Curie temperature. J Appl Phys 102:054101

    Article  CAS  Google Scholar 

  133. Lei C, Ye G (2008) Lead-free piezoelectric ceramics derived from the K0.5Na0.5NbO3-AgNbO3 solid solution system. Appl Phys Lett 93:042901

    Article  CAS  Google Scholar 

  134. Wang X, Wu J, Cheng X, Zhang B, Zhu J, Xiao D (2013) Compositional dependence of phase structure and electrical properties in (K0.50Na0.50)0.97Bi0.01(Nb1-xZrx)O3 lead-free ceramics. Ceram Int 39:8021–8024

    Article  CAS  Google Scholar 

  135. Du J, Zang Z, Yi J, Zhang F, Huang F (2012) Effects of W2/3Bi1/3 substitute on piezoelectric properties of KNN-based ceramics. Mater Lett 70:23–25

    Article  CAS  Google Scholar 

  136. Hao J, Chu R, Xu Z, Zang G, Li G (2009) Structure and electrical properties of (Li, Sr, Sb)-modified K0.5Na0.5NbO3 lead-free piezoelectric ceramics. J Alloys Compd 479:376–380

    Article  CAS  Google Scholar 

  137. Tan X, Fan H, Ke S, Zhou L, Mai W, Huang H (2012) Structural dependence of piezoelectric, dielectric and ferroelectric properties of K0.5Na0.5(Nb1-2x/5Cux)O3 lead-free ceramics with high Qm. Mater Res Bull 47:4472–4477

    Article  CAS  Google Scholar 

  138. Coondoo I, Panwar N, Rai R, Amorín H, Kholkin L (2013) Synthesis and physical properties of Ca-and Ta-modified (K, Na)NbO3 lead-free piezoelectric ceramics. Phase Transit 86:1130–1140

    Article  CAS  Google Scholar 

  139. Wu J, Xiao D, Wang Y, Wu L, Jiang Y, Zhu J (2008) K/Na ratio dependence of the electrical properties of [(KxNa1-x)0.95Li0.05](Nb0.95Ta0.05)O3 lead-free ceramics. J Am Ceram Soc 91:2385–2387

    Article  CAS  Google Scholar 

  140. Hao J, Bai W, Shen B, Zhai J (2012) Improved piezoelectric properties of (KxNa1-x)0.94Li0.06NbO3 lead-free ceramics fabricated by combining two-step sintering. J Alloys Compd 534:13–19

    Article  CAS  Google Scholar 

  141. Kang Y, Zhao Y, Huang R, Zhao Y, Zhou H (2011) Effect of changing Na/K ratio on structure and electrical properties of (NaxKy)(Nb0.885Sb0.08)O3-0.035LiTaO3 lead-free piezoelectric ceramics. J Am Ceram Soc 94:1683–1686

    Article  CAS  Google Scholar 

  142. Chang Y, Yang Z, Ma D, Liu Z, Wang Z (2009) Phase coexistence and high electrical properties in (KxNa0.96-xLi0.04)(Nb0.85Ta0.15)O3 piezoelectric ceramics. J Appl Phys 105:054101

    Article  CAS  Google Scholar 

  143. Zuo R, Fang X, Ye C (2007) Phase structures and electrical properties of new lead-free (Na0.5K0.5)NbO3-(Bi0.5Na0.5)TiO3 ceramics. Appl Phys Lett 90:092904

    Article  CAS  Google Scholar 

  144. Du H, Zhou W, Luo F, Zhu D, Qu S, Li Y, Pei Z (2008) Structure and electrical properties’ investigation of (K0.5Na0.5)NbO3-(Bi0.5Na0.5)TiO3 lead-free piezoelectric ceramics. J Phys D: Appl Phys 41:085416

    Google Scholar 

  145. Du H, Zhou W, Luo F, Zhu D, Qu S, Li Y, Pei Z (2008) Polymorphic phase transition dependence of piezoelectric properties in (K0.5Na0.5)NbO3-(Bi0.5K0.5)TiO3 lead-free ceramics. J Phys D: Appl Phys 41:15413

    Google Scholar 

  146. Jiang P, YangQ YuD, Hu F, Chen C, Tu N, Li M (2010) Microstructure and electrical properties of Li0.5Bi0.5TiO3-modified (Na0.5K0.5)NbO3 lead-free piezoelectric ceramics. J Alloys Compd 493:276–280

    Article  CAS  Google Scholar 

  147. Wang R, Xie J, Hanada K, Matsusaki K, Kawanaka H, Bando H, Itoh M (2008) Enhanced piezoelectricity around the tetragonal/orthorhombic morphotropic phase boundary in (Na, K)NbO3-ATiO3 solid solutions. J Electroceram 21:263–266

    Article  CAS  Google Scholar 

  148. Chen Z, He X, Yu Y, Hu J (2009) Piezoelectric and dielectric properties of (Na0.5K0.5)NbO3-(Bi0.5Na0.5)0.94Ba0.06TiO3 lead-free piezoelectric ceramics. Jpn JAppl Phys 48:030204

    Google Scholar 

  149. Lin D, Kwok W, Chan L (2007) Dielectric and piezoelectric properties of (K0.5Na0.5)NbO3-Ba(Zr0.05Ti0.95)O3 lead-free ceramics. Appl Phys Lett 91:143513

    Article  CAS  Google Scholar 

  150. Lin D, Kwok W (2012) Phase transition, dielectric and piezoelectric properties of K0.5Na0.5NbO3-CaTi0.9Zr0.1O3 lead-free ceramics. J Mater Sci 47:397–402

    Article  CAS  Google Scholar 

  151. Park Y, Cho H, Paik S, Nahm S, Lee G, Kim H (2007) Microstructure and piezoelectric properties of lead-free (1-x)(Na0.5K0.5)NbO3-xCaTiO3 ceramics. J Appl Phys 102:124101

    Article  CAS  Google Scholar 

  152. Kim R, Song C, Choi W, Cho S, Kim J, Yoon J (2009) Synthesis and piezoelectric properties of (1-x)(Na0.5K0.5)NbO3-x(Ba0.95Sr0.05)TiO3 ceramics. J Electroceram 23:502

    Article  CAS  Google Scholar 

  153. Zuo R, Lv D, Fu J, Liu Y, Li L (2009) Phase transition and electrical properties of lead free (Na0.5K0.5)NbO3-BiAlO3 ceramics. J Alloys Compd 476:836–839

    Article  CAS  Google Scholar 

  154. Du H, Zhou W, Luo F, Zhu D, Qu S, Li Y, Pei Z (2008) Design and electrical properties’ investigation of (K0.5Na0.5)NbO3-BiMeO3 lead-free piezoelectric ceramics. J Appl Phys 104:034104

    Article  CAS  Google Scholar 

  155. Zhang C, ChenZ Ji J, Wang L, Chen B, Yao H, Chen F (2011) Crystal structures and electrical properties of (1-x)K0.5Na0.5NbO3-xBi0.8La0.2FeO3 lead-free ceramics. J Alloys Compd 509:2425–2429

    Article  CAS  Google Scholar 

  156. WuW Xiao D, Wu J, Liang W, Li J, Zhu J (2011) Polymorphic phase transition-induced electrical behavior of BiCoO3-modified (K0.48Na0.52)NbO3 lead-free piezoelectric ceramics. J Alloys Compd 509:L284–L288

    Article  CAS  Google Scholar 

  157. Jiang M, Liu X, Chen G (2009) Phase structures and electrical properties of new lead-free Na0.5K0.5NbO3-LiSbO3-BiFeO3 ceramics. Scripta Mater 60:909–912

    Article  CAS  Google Scholar 

  158. Jiang M, Liu X, Chen G, Zhou C (2009) Dielectric and piezoelectric properties of LiSbO3 doped 0.995K0.5Na0.5NbO3-0.005BiFeO3 piezoelectric ceramics. Mater Lett 63:1262–1265

    Article  CAS  Google Scholar 

  159. Chao X, Yang Z, Li Z, Li Y (2012) Phase structures, electrical properties and temperature stability of (1-x)[(K0.458Na0.542)0.96Li0.04](Nb0.85Ta0.15)O3-xBiFeO3 ceramics. J Alloys Compd 518:1–5

    Article  CAS  Google Scholar 

  160. Zhou J, Li F, Cheng Q, Wang K, Zhang W, Wang M (2012) Addition of small amounts of BiFeO3 to (Li, K, Na)(Nb, Ta)O3 lead-free ceramics: Influence on phase structure, microstructure and piezoelectric properties. J Eur Ceram Soc 32:3575–3582

    Article  CAS  Google Scholar 

  161. Li X, Zhu J, Wang M, Luo Y, Shi W, Li L, Xiao D (2010) BiScO3-modified (K0.475Na0.475Li0.05)(Nb0.95Sb0.05)O3 lead-free piezoelectric ceramics. J Alloys Compd 499:L1–L4

    Article  CAS  Google Scholar 

  162. Minhong J, Manjiao D, Huaxin L, Shi W, Xinyu L (2011) Piezoelectric and dielectric properties of K0.5Na0.5NbO3-LiSbO3-BiScO3 lead-free piezoceramics. Mater Sci Eng, B 176:167–170

    Article  CAS  Google Scholar 

  163. Sun X, Deng J, Sun C, Li J, Chen J, Yu R, Qiao L (2009) Effect of BiScO3 and LiNbO3 on the piezoelectric properties of (Na0.5K0.5)NbO3 ceramics. J Am Ceram Soc 92:1853–1855

    Article  CAS  Google Scholar 

  164. Zhao X, Wang H, Yuan C, Xu J, Cui Y, Ma J (2013) Effects of Co doping on microstructure and properties of (K0.5Na0.5)NbO3-LiSbO3-BiFe1-xCoxO3 lead-free piezoelectric ceramics. J Mater Sci: Mater Electron 24:1480–1484

    CAS  Google Scholar 

  165. Liu Y, Huang Y, Du H, Li H, Zhang G (2010) Crystal structure and properties of K0.5Na0.5NbO3-Bi0.5Na0.5TiO3-LiSbO3 lead-free piezoelectric ceramics. J Alloys Compd 506:407–411

    Article  CAS  Google Scholar 

  166. Liu C, Liu X, Jiang M, Ma J (2010) Microstructure and piezoelectric properties of Na0.5K0.5NbO3-BiNiO3-LiSbO3 lead-free ceramics. J Alloys Compd 503:209–212

    Article  CAS  Google Scholar 

  167. Chen X, Wu J, Cheng X, Wu B, Wu W, Xiao D, Zhu J (2012) Piezoelectric properties of [Li0.03(K0.48Na0.52)0.97](Nb0.97Sb0.03)O3-(Ba0.85Ca0.15)(Ti0.90Zr0.10)O3 lead-free piezoelectric ceramics. Curr Appl Phys 12:752–754

    Article  Google Scholar 

  168. Chen L, Fan H, Zhang M, Yang C, Chen X (2010) Phase structure, microstructure and piezoelectric properties of perovskite (K0.5Na0.5)0.95Li0.05NbO3-Bi0.5(K0.15Na0.85)0.5TiO3 lead-free ceramics. J Alloys Compd 492:313–319

    Article  CAS  Google Scholar 

  169. Liu Y, Chu R, Xu Z, Zhang Y, Chen Q, Li G (2011) Effects of BiAlO3 on structure and electrical properties of K0.5Na0.5NbO3-LiSbO3 lead-free piezoceramics. Mater Sci Eng, B 176:1463–1466

    Article  CAS  Google Scholar 

  170. Yang H, Zhou C, Zhou Q, Yuan C, Li W, Wang H (2013) Lead-free (Li, Na, K)(Nb, Sb)O3 piezoelectric ceramics: effect of Bi (Ni0.5Ti0.5)O3 modification and sintering temperature on microstructure and electrical properties. J Mater Sci 48:2997–3002

    Article  CAS  Google Scholar 

  171. Zuo R, Ye C, Fang X (2007) Dielectric and piezoelectric properties of lead free Na0.5K0.5NbO3-BiScO3 ceramics. Jpn J Appl Phys 46:6733

    Article  CAS  Google Scholar 

  172. Zhang B, Wu J, Wang X, Cheng X, Zhu J, Xiao D (2013) Rhombohedral-orthorhombic phase coexistence and electrical properties of Ta and BaZrO3 co-modified (K, Na)NbO3 lead-free ceramics. Curr Appl Phys 13:1647–1650

    Article  Google Scholar 

  173. Wang R, Bando H, Katsumata T, Inaguma Y, Taniguchi H, Itoh M (2009) Tuning the orthorhombic-rhombohedral phase transition temperature in sodium potassium niobate by incorporating barium zirconate. Phys Status Solidi-R 3:142–144

    Article  CAS  Google Scholar 

  174. Wang R, Bando H, Kidate M, Nishihara Y, Itoh M (2011) Effects of a-site ions on the phase transition temperatures and dielectric properties of (1-x)(Na0.5K0.5)NbO3-xAZrO3 solid solutions. Jpn J Appl Phys 50:09ND10

    Google Scholar 

  175. Liang W, Wu W, Xiao D, Zhu J (2011) Effect of the addition of CaZrO3 and LiNbO3 on the phase transitions and piezoelectric properties of K0.5Na0.5NbO3 lead-free ceramics. J Am Ceram Soc 94:4317–4322

    Article  CAS  Google Scholar 

  176. Liang W, Wang Z, Xiao D, Wu J, Wu W, Huang T, Zhu J (2012) Effect of new phase boundary on the dielectric and piezoelectric properties of K0.5Na0.5NbO3-x-BaZrO3-yBi0.5Na0.5TiO3 lead-free ceramics. Integr Ferroelectr 139:63–74

    Article  CAS  Google Scholar 

  177. Liang W, Wu W, Xiao D, Zhu J, Wu J (2011) Construction of new morphotropic phase boundary in 0.94(K0.4-xNa0.6BaxNb1-xZrx)O3-0.06LiSbO3 lead-free piezoelectric ceramics. J Mater Sci 46:6871

    Article  CAS  Google Scholar 

  178. Liang W, Wu W, Xiao D, Zhu J, Zhu J, Wu J (2011) New crystallographic dielectric phase boundary in K0.5Na0.5NbO3-based lead-free ceramics. Phys Status Solidi-R 5:220–222

    Article  CAS  Google Scholar 

  179. Cheng X, Wu J, Zheng T, Wang X, Zhang B, Xiao D, Zhu J, Wang X, Lou X (2014) Rhombohedral-tetragonal phase coexistence and piezoelectric properties based on potassium-sodium niobate ternary system. J Alloy Compd 610:86–91

    Article  CAS  Google Scholar 

  180. Wu J, Yang Y, Wang X, Xiao D, Zhu J (2014) Phase transition and piezoelectric properties of (1-x)(K0.42Na0.58)(Nb0.96Sb0.04)O3-x(Bi0.5Na0.5)0.90Mg0.10ZrO3 lead-free ceramics. J Mater Sci: Mater Electron 25:4650–4656

    CAS  Google Scholar 

  181. Tao H, Wu J, Zheng T, Wang X, Lou X (2015) New (1-x)K0.45Na0.55Nb0.96Sb0.04O3-xBi0.5Na0.5HfO3 lead-free ceramics: Phase boundary and their electrical properties. J Appl Phys 118:044102

    Article  CAS  Google Scholar 

  182. Yuan Y, Wu J, Tao H, Lv X, Wang X, Lou X (2015) Composition design and electrical properties in (1-y)(K0.40Na0.60)0.985Li0.015(Nb1-xSbx)O3-yBi0.5Na0.5ZrO3 lead-free ceramics. J Appl Phys 117:084103

    Article  CAS  Google Scholar 

  183. Du H, Zhou W, Zhu D, Fa L, Qu S, Li Y, Pei Z (2008) Sintering characteristic, microstructure, and dielectric relaxor behavior of (K0.5Na0.5)NbO3-(Bi0.5Na0.5)TiO3 lead-free ceramics. J Am Ceram Soc 91:2903–2909

    Article  CAS  Google Scholar 

  184. Zhang C, Zheng T, Wu J (2016) Structure-property in KNNS-BNT-BNH ternary system with rhombohedral-tetragonal phase boundary. Ceram Int 42:16049–16054

    Article  CAS  Google Scholar 

  185. Lv X, Wu J, Yang S, Xiao D, Zhu J (2016) Identification of phase boundaries and electrical properties in ternary potassium-sodium niobate-based ceramics. ACS Appl Mate Interfaces 8:18943–18953

    Article  CAS  Google Scholar 

  186. Zuo R, Fu J (2011) Rhombohedral-tetragonal phase coexistence and piezoelectric properties of (NaK)(NbSb)O3-LiTaO3-BaZrO3 lead-free ceramics. J Am Ceram Soc 94:1467–1470

    Article  CAS  Google Scholar 

  187. Zheng T, Wu J, Xiao D, Zhu J, Wang X, Lou X (2015) Potassium-sodium niobate lead-free ceramics: modified strain as well as piezoelectricity. J Mater Chem A 3:1868–1874

    Article  CAS  Google Scholar 

  188. Zhang T, Kounga B, Aulbach E, Ehrenberg H, Rödel J (2007) Giant strain in lead-free piezoceramics Bi0.5Na0.5TiO3-BaTiO3-K0.5Na0.5NbO3 system. Appl Phys Lett 91:112906

    Article  CAS  Google Scholar 

  189. Zheng T, Wu J, Xiao D, Zhu J, Wang X, Lou X (2015) Composition-driven phase boundary and piezoelectricity in potassium-sodium niobate-based ceramics. ACS Appl Mater Interfaces 7:20332–20341

    Article  CAS  Google Scholar 

  190. Wang X, Zheng T, Wu J, Xiao D, Zhu J, Wang H, Gu Y (2015) Characteristics of giant piezoelectricity around the rhombohedral-tetragonal phase boundary in (K, Na)NbO3-based ceramics with different additives. J Mater Chem A 3:15951–15961

    Article  CAS  Google Scholar 

  191. Zheng T, Wu J, Cheng X, Wang X, Zhang B, Xiao D, Lou X (2014) High strain in (K0.40Na0.60)(Nb0.955Sb0.045)O3-Bi0.50Na0.50ZrO3 lead-free ceramics with large piezoelectricity. J Mater Chem C 2:8796–8803

    Article  CAS  Google Scholar 

  192. Hoffmann J, Hammer M, Endriss A, Lupascu C (2001) Correlation between microstructure, strain behavior, and acoustic emission of soft PZT ceramics. Acta Mater 49:1301–1310

    Article  CAS  Google Scholar 

  193. Pham N, Hussain A, Ahn W, Kim W, Jeong J, Lee S (2010) Giant strain in Nb-doped Bi0.5(Na0.82K0.18)0.5TiO3 lead-free electromechanical ceramics. Mater Lett 64:2219–2222

    Article  CAS  Google Scholar 

  194. Matsubara M, Kikuta K, Hirano S (2005) Piezoelectric properties of (K0.5Na0.5)(Nb1-xTax)O3-K5.4CuTa10O29 ceramics. J Appl Phys 97:114105

    Article  CAS  Google Scholar 

  195. Zheng T, Wu H, Yuan Y, Lv X, Li Q, Men T, Li F (2017) The structural origin of enhanced piezoelectric performance and stability in lead free ceramics. Energy Environ Sci 10:528–537

    Article  CAS  Google Scholar 

  196. Wu B, Wu H, Wu J, Xiao D, Zhu J, Pennycook J (2016) Giant piezoelectricity and high curie temperature in nanostructured alkali niobate lead-free piezoceramics through phase coexistence. J Am Chem Soc 138:15459–15464

    Article  CAS  Google Scholar 

  197. Wu J, Tao H, Yuan Y, Lv X, Wang X, Lou X (2015) Role of antimony in the phase structure and electrical properties of potassium-sodium niobate lead-free ceramics. RSC Adv 5:14575–14583

    Article  CAS  Google Scholar 

  198. Li X, Jiang M, Liu J, Zhu J, Zhu X, Li L, Xiao D (2009) Phase transitions and electrical properties of (1-x)(K0.5Na0.5)NbO3-xBiScO3 lead-free piezoelectric ceramics with a CuO sintering aid. Phys Status Solidi A 206:2622–2626

    Article  CAS  Google Scholar 

  199. Zheng T, Wu J, Cheng X, Wang X, Zhang B, Xiao D, Wang X (2014) New potassium-sodium niobate material system: a giant-d33 and high-TC lead-free piezoelectric. Dalton T 43:11759–11766

    Article  CAS  Google Scholar 

  200. Zhou J, Li F, Zhang W (2012) BiFeO3-modified (Li, K, Na)(Nb, Ta)O3 lead-free piezoelectric ceramics with temperature-stable piezoelectric property and enhanced mechanical strength. J Mater Sci 47:1767–1773

    Article  CAS  Google Scholar 

  201. Wu B, Wu J, Xiao D, Zhu J (2015) Modification of both d33 and TC in a potassium-sodium niobate ternary system. Dalton T 44:21141–21152

    Article  CAS  Google Scholar 

  202. Wu J, Xiao D, Wang Y, Wu W, Zhang B, Li J, Zhu J (2008) CaTiO3-modified [(K0.5Na0.5)0.94Li0.06](Nb0.94Sb0.06)O3 lead-free piezoelectric ceramics with improved temperature stability. Scripta Mater 59:750–752

    Article  CAS  Google Scholar 

  203. Wang R, Wang K, Yao F, Li F, Schader H, Webber G, Rödel J (2015) Temperature stability of lead-free niobate piezoceramics with engineered morphotropic phase boundary. J Am Ceram Soc 98:2177–2182

    Article  CAS  Google Scholar 

  204. Yao Z, Wang K, Shen Y, Li F (2015) Robust CaZrO3-modified (K, Na)NbO3-based lead-free piezoceramics: high fatigue resistance insensitive to temperature and electric field. J Appl Phys 118:134102

    Article  CAS  Google Scholar 

  205. Gao J, Xue D, Wang Y, Wang D, Zhang L, Wu H, Hou S (2011) Microstructure basis for strong piezoelectricity in Pb-free Ba (Zr0.2Ti0.8)O3-(Ba0.7Ca0.3)TiO3 ceramics. Appl Phys Lett 99:092901

    Article  CAS  Google Scholar 

  206. Zeches J, Rossell D, Zhang X, Hatt J, He Q, Yang H, Sheng G (2009) A strain-driven morphotropic phase boundary in BiFeO3. Science 326:977–980

    Article  CAS  Google Scholar 

  207. Damjanovic D (2005) Contributions to the piezoelectric effect in ferroelectric single crystals and ceramics. J Am Ceram Soc 88:2663–2676

    Article  CAS  Google Scholar 

  208. Schönau A, Schmitt A, Knapp M, Fuess H, Eichel A, Kungl H, Hoffmann J (2007) Nanodomain structure of Pb[Zr1-xTix]O3 at its morphotropic phase boundary: investigations from local to average structure. Phys Rev B 75:184117

    Article  CAS  Google Scholar 

  209. Rossetti A, Khachaturyan G, Akcay G, Ni Y (2008) Ferroelectric solid solutions with morphotropic boundaries: vanishing polarization anisotropy, adaptive, polar glass, and two-phase states. J Appl Phys 103:114113

    Article  CAS  Google Scholar 

  210. Wu H, Xue D, Lv D, Gao J, Guo S, Zhou Y, Ren X (2012) Microstructure at morphotropic phase boundary in Pb(Mg1/3Nb2/3)O3-PbTiO3 ceramic: coexistence of nano-scaled {110}-type rhombohedral twin and {110}-type tetragonal twin. J Appl Phys 112:052004

    Article  CAS  Google Scholar 

  211. Fu J, Zuo R, Wu C, Jiang Z, Li L, Yang Y, Li L (2012) Electric field induced intermediate phase and polarization rotation path in alkaline niobate based piezoceramics close to the rhombohedral and tetragonal phase boundary. Appl Phys Lett 100:122902

    Article  CAS  Google Scholar 

  212. Zhang S, Xia R, Shrout R (2007) Modified (K0.5Na0.5)NbO3 based lead-free piezoelectrics with broad temperature usage range. Appl Phys Lett 91:132913

    Article  CAS  Google Scholar 

  213. Zhang S, Xia R, Hao H, Liu H, Shrout R (2008) Mitigation of thermal and fatigue behavior in K0.5Na0.5NbO3-based lead free piezoceramics. Appl Phys Lett 92:152904

    Article  CAS  Google Scholar 

  214. Zheng T, Wu W, Wu J, Zhu J, Xiao D (2016) Balanced development of piezoelectricity, Curie temperature, and temperature stability in potassium-sodium niobhrate lead-free ceramics. J Mater Chem C 4:9779–9787

    Article  CAS  Google Scholar 

  215. Wang D, Hussain F, Khesro A, Feteira A, Zhao Q, Reaney M (2017) Composition and temperature dependence of structure and piezoelectricity in (1-x)(K1-yNay)NbO3-x(Bi1/2Na1/2)ZrO3 lead-free ceramics. J Am Ceram Soc 100:627–637

    Article  CAS  Google Scholar 

  216. Zhou S, Wang K, Yao Z, Zheng WuJ, Xiao D, Li F (2015) Multi-scale thermal stability of niobate-based lead-free piezoceramics with large piezoelectricity. J Mater Chem C 3:8780–8787

    Article  CAS  Google Scholar 

  217. Wang K, Yao Z, Jo W, Gobeljic D, Shvartsman V, Lupascu C, Rödel J (2013) Temperature-insensitive (K, Na)NbO3-based lead-free piezoactuator ceramics. Adv Funct Mater 23:4079–4086

    Article  CAS  Google Scholar 

  218. Yao F, Wang K, Jo W, Webber KG, Comyn TP, Ding J, Xu B, Cheng L, Zheng M, Hou Y, Li J (2016) Diffused phase transition boosts thermal stability of high-performance lead-free piezoelectrics. Adv Funct Mater 26:1217–1224

    Article  CAS  Google Scholar 

  219. Zhang MH, Wang K, Zhou J, Zhou J, Chu X, Lv X, Wu J, Li J (2017) Thermally stable piezoelectric properties of (K, Na)NbO3-based leadfree perovskite with rhombohedral-tetragonal coexisting phase. Acta Mater 122:344–351

    Article  CAS  Google Scholar 

  220. Zhang M, Wang K, Du YJ, Dai G, Sun W, Li G, Hu D, Thong HC, Zhao C, Xi X, Yue Z, Li J (2017) High and temperature-insensitive piezoelectric strain in alkali niobate lead-free perovskite. J Am Chem Soc 139:3889–3895

    Article  CAS  Google Scholar 

  221. Huo X, Zheng L, Zhang S, Zhang R, Liu G, Wang R, Yang B, Cao W, Shrout TR (2014) Growth and properties of Li, Ta modified (K, Na)NbO3 lead-free piezoelectric single crystals. Phys Status Solidi-R 8:86–90

    Article  CAS  Google Scholar 

  222. Zheng L, Wang J, Huo X, Wang R, Sang S, Li S, Zheng P, Cao W (2014) Temperature dependence of dielectric and electromechanical properties of (K, Na)(Nb, Ta)O3 single crystal and corresponding domain structure evolution. J Appl Phys 116:044105

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiagang Wu .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wu, J. (2018). Alkali Niobate-Based Piezoelectric Materials. In: Advances in Lead-Free Piezoelectric Materials. Springer, Singapore. https://doi.org/10.1007/978-981-10-8998-5_3

Download citation

Publish with us

Policies and ethics