Advertisement

Quantum Chromodynamics

  • Kadir Utku Can
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

This chapter is devoted to making the reader familiar with the ideas underlying the QCD and its formalism. We briefly discuss the advent of the color quantum number, which is a unique feature and centerpiece of strong interactions. In what follows, QCD is presented formally as a quantum field theory, where we discuss its energy scale-dependent characteristics and how it is related to the formation of hadrons. Finally, by following the early experimental developments, we give a historical account of the evidence for the hadron structure and sketch the simple formalism that is commonly used to study it in a theoretical approach.

Keywords

Color charge Quantum field theory Strong coupling constant Confinement Hadron structure 

References

  1. 1.
    C. Patrignani et al., Review of particle physics. Chin. Phys. C40(10), 100001 (2016),  https://doi.org/10.1088/1674-1137/40/10/100001
  2. 2.
    O.W. Greenberg, Spin and unitary-spin independence in a paraquark model of baryons and mesons. Phys. Rev. Lett. 13, 598–602 (1964), http://link.aps.org/doi/10.1103/PhysRevLett.13.598
  3. 3.
    Y. Nambu, A systematics of hadrons in subnuclear physics, in Preludes in Theoretical Physics in Honor of V. F. Weisskopf (1966), p. 133Google Scholar
  4. 4.
    M.Y. Han, Y. Nambu, Three-triplet model with double \({\text{SU}}(3)\) symmetry. Phys. Rev. 139, B1006–B1010 (1965), http://link.aps.org/doi/10.1103/PhysRev.139.B1006
  5. 5.
    L. Montanet et al., Review of particle properties. Phys. Rev. D 50, 1173–1814 (1994), http://link.aps.org/doi/10.1103/PhysRevD.50.1173
  6. 6.
    L.D. Faddeev, V.N. Popov, Feynman diagrams for the yang-mills field. Phys. Lett. B 25(1), 29–30 (1967). ISSN 0370-2693, http://www.sciencedirect.com/science/article/pii/0370269367900676
  7. 7.
    T.-P. Cheng, L.-F. Li, Gauge Theory of Elementary Particle Physics (Clarendon Press, Oxford, 1984)Google Scholar
  8. 8.
    S. Weinberg, The Quantum Theory of Fields. Vol. 2: Modern Applications (Cambridge University Press, Cambridge, 2013). ISBN 9781139632478, 9780521670548, 9780521550024Google Scholar
  9. 9.
    G. Hooft, Renormalization of massless yang-mills fields. Nucl. Phys. B 33(1), 173–199 (1971a)ADSCrossRefGoogle Scholar
  10. 10.
    G. Hooft, Renormalizable lagrangians for massive yang-mills fields. Nucl. Phys. B 35(1), 167–188 (1971b)ADSCrossRefGoogle Scholar
  11. 11.
    I.J.R. Aitchison, AJG Hey, Gauge Theories in Particle Physics: A Practical Introduction, 4th edn. (CRC Press, Boca Raton, FL, 2013), https://cds.cern.ch/record/1507184
  12. 12.
    J. Frenkel, J.C. Taylor, Asymptotic freedom in the axial and coulomb gauges. Nucl. Phys. B 109(3), 439–451 (1976). ISSN 0550-3213, http://www.sciencedirect.com/science/article/pii/0550321376902443
  13. 13.
    I.B. Khriplovich, Green’s functions in theories with non-abelian gauge group. Sov. J. Nucl. Phys. 10, 235–242 (1969). Yad. Fiz.10,409 (1969)Google Scholar
  14. 14.
    D.J. Gross, F. Wilczek, Ultraviolet behavior of non-abelian gauge theories. Phys. Rev. Lett. 30, 1343–1346 (1973), http://link.aps.org/doi/10.1103/PhysRevLett.30.1343
  15. 15.
    H.D. Politzer, Reliable perturbative results for strong interactions? Phys. Rev. Lett. 30, 1346–1349 (1973), http://link.aps.org/doi/10.1103/PhysRevLett.30.1346
  16. 16.
    M. Gell-Mann, F.E. Low, Quantum electrodynamics at small distances. Phys. Rev. 95, 1300–1312 (1954), http://link.aps.org/doi/10.1103/PhysRev.95.1300
  17. 17.
    C.G. Callan, Broken scale invariance in scalar field theory. Phys. Rev. D 2, 1541–1547 (1970), http://link.aps.org/doi/10.1103/PhysRevD.2.1541
  18. 18.
    K. Symanzik, Small distance behaviour in field theory and power counting. Comm. Math. Phys. 18(3), 227–246 (1970), http://projecteuclid.org/euclid.cmp/1103842537
  19. 19.
    M. Czakon, The four-loop QCD beta-function and anomalous dimensions. Nucl. Phys. B 710, 485–498 (2005),  https://doi.org/10.1016/j.nuclphysb.2005.01.012
  20. 20.
    T. van Ritbergen, J.A.M. Vermaseren, S.A. Larin, The four loop beta function in quantum chromodynamics. Phys. Lett. B 400, 379–384 (1997),  https://doi.org/10.1016/S0370-2693(97)00370-5
  21. 21.
    S. Bethke, The 2009 world average of \(\alpha \) s. Eur. Phys. J. C 64(4), 689–703 (2009). ISSN 1434-6052, http://dx.doi.org/10.1140/epjc/s10052-009-1173-1
  22. 22.
    G. Arnison et al., Observation of jets in high transverse energy events at the cern proton antiproton collider. Phys. Lett. B 123(1), 115–122 (1983). ISSN 0370-2693, http://www.sciencedirect.com/science/article/pii/037026938390970X
  23. 23.
    G. Arnison et al., Associated production of an isolated, large-transverse-momentum lepton (electron or muon), and two jets at the cern pp collider. Phys. Lett. B 147(6), 493–508 (1984). ISSN 0370-2693, http://www.sciencedirect.com/science/article/pii/0370269384914102
  24. 24.
    P. Bagnaia et al., Measurement of very large transverse momentum jet production at the cern pp collider. Phys. Lett. B 138(5), 430–440 (1984). ISSN 0370-2693, http://www.sciencedirect.com/science/article/pii/037026938491935X
  25. 25.
    G.S. Bali, QCD forces and heavy quark bound states. Phys. Rept. 343, 1–136 (2001),  https://doi.org/10.1016/S0370-1573(00)00079-X
  26. 26.
    I. Estermann, O. Stern, Über die magnetische ablenkung von wasserstoffmolekülen und das magnetische moment des protons. ii. Zeitschrift für Physik 85(1), 17–24 (1933). ISSN 0044-3328, http://dx.doi.org/10.1007/BF01330774
  27. 27.
    R. Frisch, O. Stern, Über die magnetische ablenkung von wasserstoffmolekülen und das magnetische moment des protons. i. Zeitschrift für Physik 85(1), 4–16 (1933). ISSN 0044-3328, http://dx.doi.org/10.1007/BF01330773
  28. 28.
    R.W. McAllister, R. Hofstadter, Elastic scattering of 188-mev electrons from the proton and the alpha particle. Phys. Rev. 102, 851–856 (1956), http://link.aps.org/doi/10.1103/PhysRev.102.851
  29. 29.
    E.M. Riordan, The Discovery of quarks. Science 256, 1287–1293 (1992),  https://doi.org/10.1126/science.256.5061.1287
  30. 30.
    J.D. Bjorken, Asymptotic sum rules at infinite momentum. Phys. Rev. 179, 1547–1553 (1969), http://link.aps.org/doi/10.1103/PhysRev.179.1547
  31. 31.
    R.P. Feynman, Photon-Hadron Interactions (WA Benjamin Inc., Reading, MA, 1972)Google Scholar
  32. 32.
    R.P. Feynman, Very high-energy collisions of hadrons. Phys. Rev. Lett. 23, 1415–1417 (1969), http://link.aps.org/doi/10.1103/PhysRevLett.23.1415
  33. 33.
    M. Gell-Mann, A schematic model of baryons and mesons. Phys. Lett. 8(3), 214–215 (1964). ISSN 0031-9163, http://www.sciencedirect.com/science/article/pii/S0031916364920013
  34. 34.
    G. Zweig, An SU(3) model for strong interaction symmetry and its breaking. Version 2, in Developments in the quark theory of hadrons, 1964–1978, vol. 1, ed. by D.B. Lichtenberg, S.P. Rosen (Hadronic Press, Inc., Nonantum, MA, 1980), pp. 22–101, http://inspirehep.net/record/4674/files/cern-th-412.pdf
  35. 35.
    J. Arrington, P.G. Blunden, W. Melnitchouk, Review of two-photon exchange in electron scattering. Prog. Part. Nucl. Phys. 66(4), 782–833 (2011). ISSN 0146-6410, http://www.sciencedirect.com/science/article/pii/S0146641011000962
  36. 36.
    M.N. Rosenbluth, High energy elastic scattering of electrons on protons. Phys. Rev. 79, 615–619 (1950), http://link.aps.org/doi/10.1103/PhysRev.79.615
  37. 37.
    R.G. Sachs, High-energy behavior of nucleon electromagnetic form factors. Phys. Rev. 126, 2256–2260 (1962), http://link.aps.org/doi/10.1103/PhysRev.126.2256

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Strangeness Nuclear Physics Laboratory, Nishina CenterRIKENWakoJapan

Personalised recommendations