Advertisement

Introduction

  • Kadir Utku Can
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

In this chapter, we outline the basics of modern particle physics. We begin with briefly discussing the elementary particles and their interactions in the context of Standard model. A special attention is given to the strong force and its relation to the hadron formation along with the intriguing questions it raises. We, then, shift our attention to introducing some differing aspects of heavy-flavored hadrons with respect to lighter hadron and review the theoretical tools that are mainly used to study hadron phenomenology. At the close of the chapter, an outline of the thesis is provided.

Keywords

Standard model Strong force Hadrons and heavy-flavored hadrons Theoretical methods 

References

  1. 1.
    S.L. Glashow, Partial-symmetries of weak interactions. Nucl. Phys. 22(4), 579–588 (1961). ISSN 0029-5582.  https://doi.org/10.1016/0029-5582(61)90469-2, http://www.sciencedirect.com/science/article/pii/0029558261904692
  2. 2.
    S. Weinberg, A model of leptons. Phys. Rev. Lett. 19, 1264–1266 (1967).  https://doi.org/10.1103/PhysRevLett.19.1264
  3. 3.
    A. Salam, Weak and electromagnetic interactions. Conf. Proc. C680519, 367–377 (1968)Google Scholar
  4. 4.
    P.W. Higgs, Broken symmetries, massless particles and gauge fields. Phys. Lett. 12(2), 132–133 (1964). ISSN 0031-9163.  https://doi.org/10.1016/0031-9163(64)91136-9, http://www.sciencedirect.com/science/article/pii/0031916364911369
  5. 5.
    F. Englert, R. Brout, Broken symmetry and the mass of gauge vector mesons. Phys. Rev. Lett. 13, 321–323 (1964).  https://doi.org/10.1103/PhysRevLett.13.321
  6. 6.
    G. Arnison et al., Experimental observation of events with large missing transverse energy accompanied by a jet or a photon(s) in p anti-p collisions at s**(1/2)=540-GeV. Phys. Lett. B 139, 115 (1984).  https://doi.org/10.1016/0370-2693(84)90046-7ADSCrossRefGoogle Scholar
  7. 7.
    J. Ellis, T. You. Updated global analysis of Higgs couplings. J. High Energy Phys. 2013(6), 103 (2013). ISSN 1029-8479.  https://doi.org/10.1007/JHEP06(2013)103
  8. 8.
    G. Aad et al., Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC. Phys. Lett. B 716, 1–29 (2012).  https://doi.org/10.1016/j.physletb.2012.08.020
  9. 9.
    S. Chatrchyan et al., Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC. Phys. Lett. B 716, 30–61 (2012).  https://doi.org/10.1016/j.physletb.2012.08.021
  10. 10.
    C. Patrignani et al., Review of Particle Physics. Chin. Phys. C40(10), 100001 (2016).  https://doi.org/10.1088/1674-1137/40/10/100001
  11. 11.
    R. Aaij et al., Observation of \(J/\psi p\) resonances consistent with Pentaquark States in \(\Lambda _b^0 \rightarrow J/\psi K^- p\) Decays. Phys. Rev. Lett. 115, 072001 (2015).  https://doi.org/10.1103/PhysRevLett.115.072001
  12. 12.
    M. Gell-Mann, The Eightfold Way: A Theory of Strong Interaction Symmetry, (1961)Google Scholar
  13. 13.
    Y. Ne’eman. Derivation of strong interactions from a gauge invariance. Nucl. Phys. 26(2), 222–229 (1961). ISSN 0029-5582.  https://doi.org/10.1016/0029-5582(61)90134-1, http://www.sciencedirect.com/science/article/pii/0029558261901341
  14. 14.
    S. Okubo, Note on unitary symmetry in strong interactions. Prog. Theor. Phys. 27(5), 949–966 (1962).  https://doi.org/10.1143/PTP.27.949., http://ptp.oxfordjournals.org/content/27/5/949.abstract
  15. 15.
    V.E. Barnes et al., Observation of a hyperon with strangeness minus three. Phys. Rev. Lett. 12, 204–206 (1964).  https://doi.org/10.1103/PhysRevLett.12.204.
  16. 16.
    P.J. Mohr, B.N. Taylor, D.B. Newell, Codata recommended values of the fundamental physical constants: 2010*. Rev. Mod. Phys. 84, 1527–1605 (2012).  https://doi.org/10.1103/RevModPhys.84.1527
  17. 17.
    A. Antognini et al., Proton structure from the measurement of 2s-2p transition frequencies of muonic hydrogen. Science, 339(6118), 417–420 (2013). ISSN 0036-8075.  https://doi.org/10.1126/science.1230016, http://science.sciencemag.org/content/339/6118/417
  18. 18.
    A. Airapetian et al., Precise determination of the spin structure function g(1) of the proton, deuteron and neutron. Phys. Rev. D 75, 012007 (2007).  https://doi.org/10.1103/PhysRevD.75.012007
  19. 19.
    VYu. Alexakhin et al., The Deuteron Spin-dependent Structure Function g1(d) and its First Moment. Phys. Lett. B 647, 8–17 (2007).  https://doi.org/10.1016/j.physletb.2006.12.076
  20. 20.
    J.J. Aubert et al., Experimental observation of a heavy particle \(j\). Phys. Rev. Lett. 33, 1404–1406 (1974).  https://doi.org/10.1103/PhysRevLett.33.1404
  21. 21.
    J.E. Augustin et al., Discovery of a narrow resonance in \({e}^{+}{e}^{-}\) annihilation. Phys. Rev. Lett. 33, 1406–1408 (1974).  https://doi.org/10.1103/PhysRevLett.33.1406
  22. 22.
    M. Mattson et al., First observation of the doubly charmed baryon Xi+(cc). Phys. Rev. Lett. 89, 112001 (2002).  https://doi.org/10.1103/PhysRevLett.89.112001
  23. 23.
    A. Ocherashvili et al., Confirmation of the double charm baryon Xi+(cc)(3520) via its decay to p D+ K-. Phys. Lett. B 628, 18–24 (2005).  https://doi.org/10.1016/j.physletb.2005.09.043
  24. 24.
    B. Aubert et al., Search for doubly charmed baryons Xi(cc)+ and Xi(cc)++ in BABAR. Phys. Rev. D 74, 011103 (2006).  https://doi.org/10.1103/PhysRevD.74.011103
  25. 25.
    R. Chistov et al., Observation of new states decaying into Lambda(c)+ K- pi+ and Lambda(c)+ K0(S) pi-. Phys. Rev. Lett. 97, 162001 (2006).  https://doi.org/10.1103/PhysRevLett.97.162001
  26. 26.
    K.U. Can, G. Erkol, M. Oka, A. Ozpineci, T.T. Takahashi, Vector and axial-vector couplings of D and D\(^\ast \) mesons in \(2+1\) flavor lattice QCD. Phys. Lett. B 719(1–3), 103–109 (2013). ISSN 0370-2693.  https://doi.org/10.1016/j.physletb.2012.12.050, http://www.sciencedirect.com/science/article/pii/S0370269312013032
  27. 27.
    A.P. Martynenko, Ground-state triply and doubly heavy baryons in a relativistic three-quark model. Phys. Lett. B 663, 317–321 (2008).  https://doi.org/10.1016/j.physletb.2008.04.030
  28. 28.
    W. Roberts, Muslema Pervin, Heavy baryons in a quark model. Int. J. Mod. Phys. A 23, 2817–2860 (2008).  https://doi.org/10.1142/S0217751X08041219
  29. 29.
    B. Julia-Diaz, D.O. Riska, Baryon magnetic moments in relativistic quark models. Nucl. Phys. A 739, 69–88 (2004).  https://doi.org/10.1016/j.nuclphysa.2004.03.078
  30. 30.
    A. Faessler, T. Gutsche, M.A. Ivanov, V.E. Lyubovitskij, J.G. Korner et al., Magnetic moments of heavy baryons in the relativistic three-quark model. Phys. Rev. D 73, 094013 (2006).  https://doi.org/10.1103/PhysRevD.73.094013
  31. 31.
    C. Albertus, E. Hernandez, J. Nieves, J.M. Verde-Velasco, Static properties and semileptonic decays of doubly heavy baryons in a nonrelativistic quark model. Eur. Phys. J. A 32, 183–199 (2007).  https://doi.org/10.1140/epja/i2007-10364-y,10.1140/epja/i2008-10547-0
  32. 32.
    N. Sharma, H. Dahiya, P.K. Chatley, M. Gupta, Spin \(1/2^+\), spin \(3/2^+\) and transition magnetic moments of low lying and charmed baryons. Phys. Rev. D 81, 073001 (2010).  https://doi.org/10.1103/PhysRevD.81.073001
  33. 33.
    N. Barik, M. Das, Magnetic moments of confined quarks and baryons in an independent-quark model based on Dirac equation with power-law potential. Phys. Rev. D 28, 2823–2829 (1983).  https://doi.org/10.1103/PhysRevD.28.2823
  34. 34.
    S. Kumar, R. Dhir, R.C. Verma, Magnetic moments of charm baryons using effective mass and screened charge of quarks. J. Phys. G31, 141–147 (2005).  https://doi.org/10.1088/0954-3899/31/2/006
  35. 35.
    B. Patel, A.K. Rai, P.C Vinodkumar, Masses and magnetic moments of heavy flavour baryons in hyper central model. J. Phys. G35, 065001 (2008).  https://doi.org/10.1088/1742-6596/110/12/122010,  https://doi.org/10.1088/0954-3899/35/6/065001
  36. 36.
    T. Yoshida, E. Hiyama, A. Hosaka, M. Oka, K. Sadato, Spectrum of heavy baryons in the quark model. Phys. Rev. D 92(11), 114029 (2015).  https://doi.org/10.1103/PhysRevD.92.114029
  37. 37.
    J. Gasser, H. Leutwyler, Chiral perturbation theory: expansions in the mass of the strange quark. Nucl. Phys. B 250, 465 (1985),  https://doi.org/10.1016/0550-3213(85)90492-4
  38. 38.
    S. Weinberg, Phenomenological Lagrangians. Physica A96, 327 (1979)Google Scholar
  39. 39.
    J. Gasser, H. Leutwyler, Quark masses. Phys. Rep. 87(3), 77–169 (1982). ISSN 0370-1573.  https://doi.org/10.1016/0370-1573(82)90035-7, http://www.sciencedirect.com/science/article/pii/0370157382900357
  40. 40.
    B.C. Tiburzi, Chiral perturbation theory, in Lattice QCD for Nuclear Physics, ed. by L. Huey-Wen, B. Harvey Meyer (Springer International Publishing, Cham, 2015), pp. 107–152. ISBN 978-3-319-08022-2.  https://doi.org/10.1007/978-3-319-08022-2_4
  41. 41.
    S. Aoki, K.-I. Ishikawa, N. Ishizuka, T. Izubuchi, D. Kadoh, K. Kanaya, Y. Kuramashi, Y. Namekawa, M. Okawa, Y. Taniguchi, A. Ukawa, N. Ukita, T. Yoshie, 2+1 Flavor lattice QCD toward the physical point. Phys. Rev. D 79, 034503 (2009).  https://doi.org/10.1103/PhysRevD.79.034503
  42. 42.
    Z.S. Brown, W. Detmold, S. Meinel, K. Orginos, Charmed bottom baryon spectroscopy from lattice QCD. Phys. Rev. D 90(9), 094507 (2014).  https://doi.org/10.1103/PhysRevD.90.094507
  43. 43.
    L. Liu, H.-W. Lin, K. Orginos, A. Walker-Loud, Singly and doubly charmed J=1/2 baryon spectrum from lattice QCD. Phys. Rev. D 81, 094505 (2010).  https://doi.org/10.1103/PhysRevD.81.094505
  44. 44.
    K.G. Wilson, Non-lagrangian models of current algebra. Phys. Rev. 179, 1499–1512 (1969).  https://doi.org/10.1103/PhysRev.179.1499
  45. 45.
    M.A. Shifman, A.I. Vainshtein, V.I. Zakharov, Qcd and resonance physics. Theoretical foundations. Nucl. Phys. B 147(5), 385–447 (1979a). ISSN 0550-3213.  https://doi.org/10.1016/0550-3213(79)90022-1, http://www.sciencedirect.com/science/article/pii/0550321379900221
  46. 46.
    M.A. Shifman, A.I. Vainshtein, V.I. Zakharov. Qcd and resonance physics. Applications. Nucl. Phys. B 147(5), 448–518 (1979b). ISSN 0550-3213.  https://doi.org/10.1016/0550-3213(79)90023-3, http://www.sciencedirect.com/science/article/pii/0550321379900233
  47. 47.
    B.L. Ioffe, QCD at low energies. Prog. Part. Nucl. Phys. 56, 232–277 (2006).  https://doi.org/10.1016/j.ppnp.2005.05.001
  48. 48.
    L.J. Reinders, H. Rubinstein, S. Yazaki, Hadron properties from QCD sum rules. Phys. Rep. 127(1), 1– 97 (1985). ISSN 0370-1573.  https://doi.org/10.1016/0370-1573(85)90065-1
  49. 49.
    S. Groote, J.G. Korner, O.I. Yakovlev, QCD sum rules for heavy baryons at next-to-leading order in alpha(s). Phys. Rev. D 55, 3016–3026 (1997)Google Scholar
  50. 50.
    J.-R. Zhang, M.-Q. Huang, Heavy baryon spectroscopy in QCD. Phys. Rev. D 78, 094015 (2008).  https://doi.org/10.1103/PhysRevD.78.094015
  51. 51.
    T.M. Aliev, A. Ozpineci, M. Savci, The magnetic moments of lambda(b) and lambda(c) baryons in light cone QCD sum rules. Phys. Rev. D 65, 056008 (2002).  https://doi.org/10.1103/PhysRevD.65.056008
  52. 52.
    S.-L. Zhu, P., W.P. Hwang, Z.-S. Yang, \(\Sigma _c\) and \(\Lambda _c\) magnetic moments from QCD spectral sum rules. Phys. Rev. D 56, 7273–7275 (1997).  https://doi.org/10.1103/PhysRevD.56.7273
  53. 53.
    K.G. Wilson, Confinement of quarks. Phys. Rev. D 10, 2445–2459 (1974).  https://doi.org/10.1103/PhysRevD.10.2445
  54. 54.
    C.M. Bouchard, Testing the standard model under the weight of heavy flavors. PoS LATTICE 2014(002) (2015)Google Scholar
  55. 55.
    A.X. El-Khadra, Quark flavor physics review. PoS LATTICE 2013(001) (2014)Google Scholar
  56. 56.
    S. Aoki et al., Review of lattice results concerning low-energy particle physics. Eur. Phys. J. C 74, 2890 (2014).  https://doi.org/10.1140/epjc/s10052-014-2890-7
  57. 57.
    S. Prelovsek, Hadron Spectroscopy. PoS LATTICE 2014, 015 (2014)Google Scholar
  58. 58.
    M. Constantinou, Hadron structure. PoS LATTICE 2014 001 (2015)Google Scholar
  59. 59.
    S. Boinepalli, D.B. Leinweber, A.G. Williams, J.M. Zanotti, J.B. Zhang, Precision electromagnetic structure of octet baryons in the chiral regime. Phys. Rev. D 74, 093005 (2006).  https://doi.org/10.1103/PhysRevD.74.093005
  60. 60.
    P.E. Shanahan, R. Horsley, Y. Nakamura, D. Pleiter, P.E.L. Rakow, G. Schierholz, H. Stuben, A.W. Thomas, R.D. Young, J.M. Zanotti, Magnetic form factors of the octet baryons from lattice QCD and chiral extrapolation. Phys. Rev. D 89, 074511 (2014a).  https://doi.org/10.1103/PhysRevD.89.074511
  61. 61.
    P.E. Shanahan, A.W. Thomas, R.D. Young, J.M. Zanotti, R. Horsley et al., Electric form factors of the octet baryons from lattice QCD and chiral extrapolation. Phys. Rev. D 90, 034502 (2014b).  https://doi.org/10.1103/PhysRevD.90.034502
  62. 62.
    S. Boinepalli, D.B. Leinweber, P.J. Moran, A.G. Williams, J.M. Zanotti, J.B. Zhang, Electromagnetic structure of decuplet baryons towards the chiral regime. Phys. Rev. D 80, 054505 (2009).  https://doi.org/10.1103/PhysRevD.80.054505.
  63. 63.
    C. Alexandrou, T. Korzec, G. Koutsou, Th Leontiou, C. Lorce et al., Delta-baryon electromagnetic form factors in lattice QCD. Phys. Rev. D 79, 014507 (2009).  https://doi.org/10.1103/PhysRevD.79.014507
  64. 64.
    C. Alexandrou, T. Korzec, G. Koutsou, J.W. Negele, Y. Proestos, The Electromagnetic form factors of the \(\Omega ^-\) in lattice QCD. Phys. Rev. D 82, 034504 (2010).  https://doi.org/10.1103/PhysRevD.82.034504
  65. 65.
    Y. Namekawa et al., Charmed baryons at the physical point in 2+1 flavor lattice QCD. Phys. Rev. D 87(9), 094512 (2013).  https://doi.org/10.1103/PhysRevD.87.094512
  66. 66.
    C. Alexandrou, V. Drach, K. Jansen, C. Kallidonis, G. Koutsou, Baryon spectrum with \(N_f=2+1+1\) twisted mass fermions. Phys. Rev. D 90(7), 074501 (2014).  https://doi.org/10.1103/PhysRevD.90.074501
  67. 67.
    R.A. Briceno, H.-W. Lin, D.R. Bolton, Charmed-baryon spectroscopy from lattice QCD with \(N_f=2+1+1\) Flavors. Phys. Rev. D 86, 094504 (2012).  https://doi.org/10.1103/PhysRevD.86.094504
  68. 68.
    H. Bahtiyar, K.U. Can, G. Erkol, M. Oka, \(\omega _c \gamma \rightarrow \omega _c^\ast \) transition in lattice QCD. Phys. Lett. B 747, 281–286 (2015). ISSN 0370-2693.  https://doi.org/10.1016/j.physletb.2015.06.006, http://www.sciencedirect.com/science/article/pii/S0370269315004281
  69. 69.
    K.U. Can, G. Erkol, M. Oka, T.T. Takahashi, \(\Lambda _c\Sigma _c\pi \) coupling and \(\Sigma _c \rightarrow \Lambda _c \pi \) decay in lattice QCD (2016), arXiv:1610.09071

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Strangeness Nuclear Physics Laboratory, Nishina CenterRIKENWakoJapan

Personalised recommendations