• Kadir Utku Can
Part of the Springer Theses book series (Springer Theses)


In this chapter, we outline the basics of modern particle physics. We begin with briefly discussing the elementary particles and their interactions in the context of Standard model. A special attention is given to the strong force and its relation to the hadron formation along with the intriguing questions it raises. We, then, shift our attention to introducing some differing aspects of heavy-flavored hadrons with respect to lighter hadron and review the theoretical tools that are mainly used to study hadron phenomenology. At the close of the chapter, an outline of the thesis is provided.


Standard model Strong force Hadrons and heavy-flavored hadrons Theoretical methods 


  1. 1.
    S.L. Glashow, Partial-symmetries of weak interactions. Nucl. Phys. 22(4), 579–588 (1961). ISSN 0029-5582.,
  2. 2.
    S. Weinberg, A model of leptons. Phys. Rev. Lett. 19, 1264–1266 (1967).
  3. 3.
    A. Salam, Weak and electromagnetic interactions. Conf. Proc. C680519, 367–377 (1968)Google Scholar
  4. 4.
    P.W. Higgs, Broken symmetries, massless particles and gauge fields. Phys. Lett. 12(2), 132–133 (1964). ISSN 0031-9163.,
  5. 5.
    F. Englert, R. Brout, Broken symmetry and the mass of gauge vector mesons. Phys. Rev. Lett. 13, 321–323 (1964).
  6. 6.
    G. Arnison et al., Experimental observation of events with large missing transverse energy accompanied by a jet or a photon(s) in p anti-p collisions at s**(1/2)=540-GeV. Phys. Lett. B 139, 115 (1984). Scholar
  7. 7.
    J. Ellis, T. You. Updated global analysis of Higgs couplings. J. High Energy Phys. 2013(6), 103 (2013). ISSN 1029-8479.
  8. 8.
    G. Aad et al., Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC. Phys. Lett. B 716, 1–29 (2012).
  9. 9.
    S. Chatrchyan et al., Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC. Phys. Lett. B 716, 30–61 (2012).
  10. 10.
    C. Patrignani et al., Review of Particle Physics. Chin. Phys. C40(10), 100001 (2016).
  11. 11.
    R. Aaij et al., Observation of \(J/\psi p\) resonances consistent with Pentaquark States in \(\Lambda _b^0 \rightarrow J/\psi K^- p\) Decays. Phys. Rev. Lett. 115, 072001 (2015).
  12. 12.
    M. Gell-Mann, The Eightfold Way: A Theory of Strong Interaction Symmetry, (1961)Google Scholar
  13. 13.
    Y. Ne’eman. Derivation of strong interactions from a gauge invariance. Nucl. Phys. 26(2), 222–229 (1961). ISSN 0029-5582.,
  14. 14.
    S. Okubo, Note on unitary symmetry in strong interactions. Prog. Theor. Phys. 27(5), 949–966 (1962).,
  15. 15.
    V.E. Barnes et al., Observation of a hyperon with strangeness minus three. Phys. Rev. Lett. 12, 204–206 (1964).
  16. 16.
    P.J. Mohr, B.N. Taylor, D.B. Newell, Codata recommended values of the fundamental physical constants: 2010*. Rev. Mod. Phys. 84, 1527–1605 (2012).
  17. 17.
    A. Antognini et al., Proton structure from the measurement of 2s-2p transition frequencies of muonic hydrogen. Science, 339(6118), 417–420 (2013). ISSN 0036-8075.,
  18. 18.
    A. Airapetian et al., Precise determination of the spin structure function g(1) of the proton, deuteron and neutron. Phys. Rev. D 75, 012007 (2007).
  19. 19.
    VYu. Alexakhin et al., The Deuteron Spin-dependent Structure Function g1(d) and its First Moment. Phys. Lett. B 647, 8–17 (2007).
  20. 20.
    J.J. Aubert et al., Experimental observation of a heavy particle \(j\). Phys. Rev. Lett. 33, 1404–1406 (1974).
  21. 21.
    J.E. Augustin et al., Discovery of a narrow resonance in \({e}^{+}{e}^{-}\) annihilation. Phys. Rev. Lett. 33, 1406–1408 (1974).
  22. 22.
    M. Mattson et al., First observation of the doubly charmed baryon Xi+(cc). Phys. Rev. Lett. 89, 112001 (2002).
  23. 23.
    A. Ocherashvili et al., Confirmation of the double charm baryon Xi+(cc)(3520) via its decay to p D+ K-. Phys. Lett. B 628, 18–24 (2005).
  24. 24.
    B. Aubert et al., Search for doubly charmed baryons Xi(cc)+ and Xi(cc)++ in BABAR. Phys. Rev. D 74, 011103 (2006).
  25. 25.
    R. Chistov et al., Observation of new states decaying into Lambda(c)+ K- pi+ and Lambda(c)+ K0(S) pi-. Phys. Rev. Lett. 97, 162001 (2006).
  26. 26.
    K.U. Can, G. Erkol, M. Oka, A. Ozpineci, T.T. Takahashi, Vector and axial-vector couplings of D and D\(^\ast \) mesons in \(2+1\) flavor lattice QCD. Phys. Lett. B 719(1–3), 103–109 (2013). ISSN 0370-2693.,
  27. 27.
    A.P. Martynenko, Ground-state triply and doubly heavy baryons in a relativistic three-quark model. Phys. Lett. B 663, 317–321 (2008).
  28. 28.
    W. Roberts, Muslema Pervin, Heavy baryons in a quark model. Int. J. Mod. Phys. A 23, 2817–2860 (2008).
  29. 29.
    B. Julia-Diaz, D.O. Riska, Baryon magnetic moments in relativistic quark models. Nucl. Phys. A 739, 69–88 (2004).
  30. 30.
    A. Faessler, T. Gutsche, M.A. Ivanov, V.E. Lyubovitskij, J.G. Korner et al., Magnetic moments of heavy baryons in the relativistic three-quark model. Phys. Rev. D 73, 094013 (2006).
  31. 31.
    C. Albertus, E. Hernandez, J. Nieves, J.M. Verde-Velasco, Static properties and semileptonic decays of doubly heavy baryons in a nonrelativistic quark model. Eur. Phys. J. A 32, 183–199 (2007).,10.1140/epja/i2008-10547-0
  32. 32.
    N. Sharma, H. Dahiya, P.K. Chatley, M. Gupta, Spin \(1/2^+\), spin \(3/2^+\) and transition magnetic moments of low lying and charmed baryons. Phys. Rev. D 81, 073001 (2010).
  33. 33.
    N. Barik, M. Das, Magnetic moments of confined quarks and baryons in an independent-quark model based on Dirac equation with power-law potential. Phys. Rev. D 28, 2823–2829 (1983).
  34. 34.
    S. Kumar, R. Dhir, R.C. Verma, Magnetic moments of charm baryons using effective mass and screened charge of quarks. J. Phys. G31, 141–147 (2005).
  35. 35.
    B. Patel, A.K. Rai, P.C Vinodkumar, Masses and magnetic moments of heavy flavour baryons in hyper central model. J. Phys. G35, 065001 (2008).,
  36. 36.
    T. Yoshida, E. Hiyama, A. Hosaka, M. Oka, K. Sadato, Spectrum of heavy baryons in the quark model. Phys. Rev. D 92(11), 114029 (2015).
  37. 37.
    J. Gasser, H. Leutwyler, Chiral perturbation theory: expansions in the mass of the strange quark. Nucl. Phys. B 250, 465 (1985),
  38. 38.
    S. Weinberg, Phenomenological Lagrangians. Physica A96, 327 (1979)Google Scholar
  39. 39.
    J. Gasser, H. Leutwyler, Quark masses. Phys. Rep. 87(3), 77–169 (1982). ISSN 0370-1573.,
  40. 40.
    B.C. Tiburzi, Chiral perturbation theory, in Lattice QCD for Nuclear Physics, ed. by L. Huey-Wen, B. Harvey Meyer (Springer International Publishing, Cham, 2015), pp. 107–152. ISBN 978-3-319-08022-2.
  41. 41.
    S. Aoki, K.-I. Ishikawa, N. Ishizuka, T. Izubuchi, D. Kadoh, K. Kanaya, Y. Kuramashi, Y. Namekawa, M. Okawa, Y. Taniguchi, A. Ukawa, N. Ukita, T. Yoshie, 2+1 Flavor lattice QCD toward the physical point. Phys. Rev. D 79, 034503 (2009).
  42. 42.
    Z.S. Brown, W. Detmold, S. Meinel, K. Orginos, Charmed bottom baryon spectroscopy from lattice QCD. Phys. Rev. D 90(9), 094507 (2014).
  43. 43.
    L. Liu, H.-W. Lin, K. Orginos, A. Walker-Loud, Singly and doubly charmed J=1/2 baryon spectrum from lattice QCD. Phys. Rev. D 81, 094505 (2010).
  44. 44.
    K.G. Wilson, Non-lagrangian models of current algebra. Phys. Rev. 179, 1499–1512 (1969).
  45. 45.
    M.A. Shifman, A.I. Vainshtein, V.I. Zakharov, Qcd and resonance physics. Theoretical foundations. Nucl. Phys. B 147(5), 385–447 (1979a). ISSN 0550-3213.,
  46. 46.
    M.A. Shifman, A.I. Vainshtein, V.I. Zakharov. Qcd and resonance physics. Applications. Nucl. Phys. B 147(5), 448–518 (1979b). ISSN 0550-3213.,
  47. 47.
    B.L. Ioffe, QCD at low energies. Prog. Part. Nucl. Phys. 56, 232–277 (2006).
  48. 48.
    L.J. Reinders, H. Rubinstein, S. Yazaki, Hadron properties from QCD sum rules. Phys. Rep. 127(1), 1– 97 (1985). ISSN 0370-1573.
  49. 49.
    S. Groote, J.G. Korner, O.I. Yakovlev, QCD sum rules for heavy baryons at next-to-leading order in alpha(s). Phys. Rev. D 55, 3016–3026 (1997)Google Scholar
  50. 50.
    J.-R. Zhang, M.-Q. Huang, Heavy baryon spectroscopy in QCD. Phys. Rev. D 78, 094015 (2008).
  51. 51.
    T.M. Aliev, A. Ozpineci, M. Savci, The magnetic moments of lambda(b) and lambda(c) baryons in light cone QCD sum rules. Phys. Rev. D 65, 056008 (2002).
  52. 52.
    S.-L. Zhu, P., W.P. Hwang, Z.-S. Yang, \(\Sigma _c\) and \(\Lambda _c\) magnetic moments from QCD spectral sum rules. Phys. Rev. D 56, 7273–7275 (1997).
  53. 53.
    K.G. Wilson, Confinement of quarks. Phys. Rev. D 10, 2445–2459 (1974).
  54. 54.
    C.M. Bouchard, Testing the standard model under the weight of heavy flavors. PoS LATTICE 2014(002) (2015)Google Scholar
  55. 55.
    A.X. El-Khadra, Quark flavor physics review. PoS LATTICE 2013(001) (2014)Google Scholar
  56. 56.
    S. Aoki et al., Review of lattice results concerning low-energy particle physics. Eur. Phys. J. C 74, 2890 (2014).
  57. 57.
    S. Prelovsek, Hadron Spectroscopy. PoS LATTICE 2014, 015 (2014)Google Scholar
  58. 58.
    M. Constantinou, Hadron structure. PoS LATTICE 2014 001 (2015)Google Scholar
  59. 59.
    S. Boinepalli, D.B. Leinweber, A.G. Williams, J.M. Zanotti, J.B. Zhang, Precision electromagnetic structure of octet baryons in the chiral regime. Phys. Rev. D 74, 093005 (2006).
  60. 60.
    P.E. Shanahan, R. Horsley, Y. Nakamura, D. Pleiter, P.E.L. Rakow, G. Schierholz, H. Stuben, A.W. Thomas, R.D. Young, J.M. Zanotti, Magnetic form factors of the octet baryons from lattice QCD and chiral extrapolation. Phys. Rev. D 89, 074511 (2014a).
  61. 61.
    P.E. Shanahan, A.W. Thomas, R.D. Young, J.M. Zanotti, R. Horsley et al., Electric form factors of the octet baryons from lattice QCD and chiral extrapolation. Phys. Rev. D 90, 034502 (2014b).
  62. 62.
    S. Boinepalli, D.B. Leinweber, P.J. Moran, A.G. Williams, J.M. Zanotti, J.B. Zhang, Electromagnetic structure of decuplet baryons towards the chiral regime. Phys. Rev. D 80, 054505 (2009).
  63. 63.
    C. Alexandrou, T. Korzec, G. Koutsou, Th Leontiou, C. Lorce et al., Delta-baryon electromagnetic form factors in lattice QCD. Phys. Rev. D 79, 014507 (2009).
  64. 64.
    C. Alexandrou, T. Korzec, G. Koutsou, J.W. Negele, Y. Proestos, The Electromagnetic form factors of the \(\Omega ^-\) in lattice QCD. Phys. Rev. D 82, 034504 (2010).
  65. 65.
    Y. Namekawa et al., Charmed baryons at the physical point in 2+1 flavor lattice QCD. Phys. Rev. D 87(9), 094512 (2013).
  66. 66.
    C. Alexandrou, V. Drach, K. Jansen, C. Kallidonis, G. Koutsou, Baryon spectrum with \(N_f=2+1+1\) twisted mass fermions. Phys. Rev. D 90(7), 074501 (2014).
  67. 67.
    R.A. Briceno, H.-W. Lin, D.R. Bolton, Charmed-baryon spectroscopy from lattice QCD with \(N_f=2+1+1\) Flavors. Phys. Rev. D 86, 094504 (2012).
  68. 68.
    H. Bahtiyar, K.U. Can, G. Erkol, M. Oka, \(\omega _c \gamma \rightarrow \omega _c^\ast \) transition in lattice QCD. Phys. Lett. B 747, 281–286 (2015). ISSN 0370-2693.,
  69. 69.
    K.U. Can, G. Erkol, M. Oka, T.T. Takahashi, \(\Lambda _c\Sigma _c\pi \) coupling and \(\Sigma _c \rightarrow \Lambda _c \pi \) decay in lattice QCD (2016), arXiv:1610.09071

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Strangeness Nuclear Physics Laboratory, Nishina CenterRIKENWakoJapan

Personalised recommendations