Detection of Moving Objects in Video Using Block-Based Approach

  • Amlan Raychaudhuri
  • Satyabrata Maity
  • Amlan Chakrabarti
  • Debotosh Bhattacharjee
Part of the Studies in Computational Intelligence book series (SCI, volume 687)


In this paper, an efficient technique has been proposed to detect moving objects in the video under dynamic as well as static background condition. The proposed method consists block-based background modelling, current frame updating, block processing of updated current frame and elimination of background using bin histogram approach. Next, enhanced foreground objects are obtained in the post-processing stage using morphological operations. The proposed approach effectively minimizes the effect of dynamic background to extract the foreground information. We have applied our proposed technique on Change Detection CDW-2012 dataset and compared the results with the other state-of-the-art methods. The experimental results prove the efficiency of the proposed approach compared to the other state-of-the-art methods in terms of different evaluation metrics.


Moving object detection Dynamic background Background modelling Block processing Background elimination Bin histogram 



The authors of this paper would like to acknowledge the website ( for obtaining the Change Detection CDW-2012 (dynamic background and baseline) dataset to perform their research work effectively.


  1. 1.
    Bovik, A.C.: Hand Book on Image and Video Processing. Academic Press, New York (2000)zbMATHGoogle Scholar
  2. 2.
    Tekalp, A.M.: Digital Video Processing. Prentice Hall, New Jersey (1995)Google Scholar
  3. 3.
    Shaikh, S.H., Saeed, K., Chaki, N.: Moving object detection using background subtraction. In: Springer Briefs in Computer Science (2014)Google Scholar
  4. 4.
    Piccardi, M.: Background subtraction techniques: a review. In: Proceedings IEEE International Conference on Systems, Man and Cybernetics (SMC), vol. 4, pp. 3099–3104 (2004)Google Scholar
  5. 5.
    Elhabian, S., El-Sayed, K., Ahmed, S.: Moving object detection in spatial domain using background removal techniques — state-of-art. Recent Patents Comput. Sci. 1, 32–54 (2008)CrossRefGoogle Scholar
  6. 6.
    Fejes, S., Davis, L.S.: Detection of independent motion using directional motion estimation. Comput. Vis. Image Understand. (CVIU) 74(2), 101–120 (1999)CrossRefGoogle Scholar
  7. 7.
    Paragios, N., Deriche, R.: Geodesic active contours and level sets for the detection and tracking of moving objects. IEEE Trans. Pattern Anal. Mach. Intell. 22(3), 266–280 (2000)CrossRefGoogle Scholar
  8. 8.
    McIvor, A.M.: Background subtraction techniques. In: Proceedings of Image and Vision Computing (2000)Google Scholar
  9. 9.
    Heikkila, J., Silven, O.: A real-time system for monitoring of cyclists and pedestrians. Proc. Image Vis. Comput. 22(7), 563–570 (2004)CrossRefGoogle Scholar
  10. 10.
    Lipton, A.J., Fujiyoshi, H., Patil, R.S.: Moving target classification and tracking from real time video. In: Proceedings 4th IEEE Workshop on Applications of Computer Vision (WACV ’98), pp. 129–136 (1998)Google Scholar
  11. 11.
    Wang, L., Hu, W., Tan, T.: Recent developments in human motion analysis. Pattern Recogn. 36(3), 585–601 (2003)CrossRefGoogle Scholar
  12. 12.
    Collins, R.T., Lipton, A.J., Kanade, T., Fujiyoshi, H., Duggins, D., Tsin, Y., Tolliver, D., Enomoto, N., Hasegawa, O., Burt, P., Wixson, L.: A system for video surveillance and monitoring. In: Technical Report CMU-RI-TR-00-12. The Robotics Institute, Carnegie Mellon University (2000)Google Scholar
  13. 13.
    Haritaoglu, I., Harwood, D., Davis, L.S.: W4: Real-time surveillance of people and their activities. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 809–830 (2000)CrossRefGoogle Scholar
  14. 14.
    Kumar, S., Yadav, J.S.: Video object extraction and its tracking using background subtraction in complex environments. Perspect. Sci. 8, 317–322 (2016)CrossRefGoogle Scholar
  15. 15.
    Rahman, A.Y.F., Hussain, A., Zaki, W., Zaman, B., Tahir, M.: Enhancement of background subtraction techniques using a second derivative in gradient direction filter. J. Electr. Comput. Eng. 2013, 1–12 (2013)CrossRefGoogle Scholar
  16. 16.
    Stauffer, C., Grimson, W.E.L.: Adaptive background mixture models for real-time tracking. In: Proceedings IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), vol. 2 (1999)Google Scholar
  17. 17.
    Heras Evangelio, R., Pätzold, M., Sikora, T.: Splitting Gaussians in mixture models. In: Proceedings of the 9th IEEE International Conference on Advanced Video and Signal-Based Surveillance (2012)Google Scholar
  18. 18.
    Varadarajan, S., Miller, P., Huiyu Z.: Spatial mixture of Gaussians for dynamic background modeling. In: Proceedings of the 10th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS ’13), pp. 63–68 (2013)Google Scholar
  19. 19.
    Tiefenbacher, P., Hofmann, M., Merget, D., Rigoll, G.: PID-based regulation of background dynamics for foreground segmentation. In: Proceedings of Image Processing (ICIP), pp. 3282–3286 (2014)Google Scholar
  20. 20.
    Morde, A., Ma, X., Guler, S.: Learning a background model for change detection. In: Proceedings of IEEE Workshop on Change Detection (2012)Google Scholar
  21. 21.
    Wixson, L.: Detecting salient motion by accumulating directionally—consistent flow. IEEE Trans. Pattern Anal. Mach. Intell. 22(8) (2000)CrossRefGoogle Scholar
  22. 22.
    Pless, R., Brodsky, T., Aloimonos, Y.: Detecting independent motion: the statistics of temporal continuity. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 768–773 (2000)CrossRefGoogle Scholar
  23. 23.
    Raychaudhuri, A., Maity, S., Chakrabarti, A., Bhattacharjee, D.: Moving object detection in video under dynamic background condition using block-based statistical features. In: Proceedings CICBA 2017, Part II, CCIS 776, pp. 371–383 (2017)Google Scholar
  24. 24.
    Goyette, N., Jodoin, P.-M., Porikli, F., Konrad, J., Ishwar, P.: Change a new change detection benchmark dataset. In: Proceedings IEEE Workshop on Change Detection (CDW-2012) at CVPR (2012)Google Scholar
  25. 25.
    Hofmann, M., Tiefenbacher, P., Rigoll, G.: Background segmentation with feedback: the pixel-based adaptive segmenter. In: Proceedings IEEE Workshop on Change Detection, pp. 38–43 (2012)Google Scholar
  26. 26.
    Francisco, J., Lopez, H., Rivera, M.: Change detection by probabilistic segmentation from monocular view. Proc. Mach. Vis. Appl. 25(5), 1175–1195 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Amlan Raychaudhuri
    • 1
  • Satyabrata Maity
    • 2
  • Amlan Chakrabarti
    • 2
  • Debotosh Bhattacharjee
    • 3
  1. 1.Department of Computer Science & EngineeringB. P. Poddar Institute of Management & TechnologyKolkataIndia
  2. 2.A. K. Choudhury School of Information Technology, University of CalcuttaKolkataIndia
  3. 3.Department of Computer Science & EngineeringJadavpur UniversityKolkataIndia

Personalised recommendations