Advertisement

Differential Evolution in PFCM Clustering for Energy Efficient Cooperative Spectrum Sensing

  • Anal Paul
  • Santi P. Maity
Chapter
Part of the Studies in Computational Intelligence book series (SCI, volume 687)

Abstract

Cooperative spectrum sensing (CSS) in cognitive radio network (CRN) is highly recommended to avoid the interference from secondary users (SUs) to primary user (PU). Several studies report that clustering-based CSS technique improves the system performance, among them fuzzy c-means (FCM) clustering algorithm is widely explored. However, it is observed that FCM generates an improper clustering of sensing information at low signal-to-noise ratio (SNR) due to inseparable nature of energy data set. To address this problem, the present chapter describes a work that investigates the scope of possibilistic fuzzy c-means (PFCM) algorithm on energy detection-based CSS. PFCM integrates the possibilistic information and fuzzy membership values of input data in the clustering process to segregate the indistinguishable energy data into the respective clusters. Differential evolution (DE) algorithm is applied with PFCM to maximize the probability of PU detection (\(P_D\)) under the constraint of a target false alarm probability (\(P_{fa}\)). The present work also evaluates the required power consumption during CSS by SUs. The proposed technique improves \(P_D\) by \(\sim \!12.53\%\) and decreases average energy consumption by \(\sim \!5.34\%\) over the existing work.

Keywords

Spectrum sensing Fuzzy c-means clustering Possibilistic fuzzy c-means clustering Differential evolution algorithm 

References

  1. 1.
    Federal Communications Commission: Spectrum policy task force, Rep. ET Docket no. 02-135 (2002)Google Scholar
  2. 2.
    OFCOM: Digital Dividend Review. A statement on our approach towards awarding the digital dividend (2007)Google Scholar
  3. 3.
    Mitola, J.: Cognitive radio: an integrated agent architecture for software defined radio. Ph.D. dissertation, Computer Communication System Laboratory, Department of Teleinformatics, Royal Institute of Technology (KTH), Stockholm, Sweden, May 2000Google Scholar
  4. 4.
    Haykin, S., Setoodeh, P.: Cognitive radio networks: the spectrum supply chain paradigm. IEEE Trans. Cognit. Commun. Netw. 1(1), 3–28 (2015)CrossRefGoogle Scholar
  5. 5.
    Banerjee, A., Paul, A., Maity, S.P.: Joint power allocation and route selection for outage minimization in multihop cognitive radio networks with energy harvesting. IEEE Trans. Cognit. Commun. Netw. 4(1), 82–92 (2018)CrossRefGoogle Scholar
  6. 6.
    Paul, A., Maity, S.P.: On outage minimization in cognitive radio networks through routing and power control. Wirel. Pers. Commun. 98(1), 251–269 (2018)CrossRefGoogle Scholar
  7. 7.
    Bhatti, D.M.S., Nam, H.: Spatial correlation based analysis of soft combination and user selection algorithm for cooperative spectrum sensing. IET Commun. 11(1), 39–44 (2017)CrossRefGoogle Scholar
  8. 8.
    Banerjee, A., Maity, S.P.: On optimal sample checkpoint for energy efficient cooperative spectrum sensing. Digit. Signal Process. 74, 56–71 (2018)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Sobron, I., Diniz, P., Martins, W., Velez, M.: Energy detection technique for adaptive spectrum sensing. IEEE Trans. Commun. 63(3), 617–627 (2015)CrossRefGoogle Scholar
  10. 10.
    Shen, J., Jiang, T., Liu, S., Zhang, Z.: Maximum channel throughput via cooperative spectrum sensing in cognitive radio networks. IEEE Trans. Wirel. Commun. 8(10), 5166–5175 (2009)CrossRefGoogle Scholar
  11. 11.
    Mingchuan, Y., Yuan, L., Xiaofeng, L., Wenyan, T.: Cyclostationary feature detection based spectrum sensing algorithm under complicated electromagnetic environment in cognitive radio networks. China Commun. 12(9), 35–44 (2015)CrossRefGoogle Scholar
  12. 12.
    Xinzhi, Z., Feifei, G., Rong, C., Tao, J.: Matched filter based spectrum sensing when primary user has multiple power levels. China Commun. 12(2), 21–31 (2015)CrossRefGoogle Scholar
  13. 13.
    Zeng, Y., Liang, Y.C.: Eigenvalue-based spectrum sensing algorithms for cognitive radio. IEEE Trans. Commun. 57(6), 1784–1793 (2009)CrossRefGoogle Scholar
  14. 14.
    Zhang, Y., Zhang, Q., Wu, S.: Entropy-based robust spectrum sensing in cognitive radio. IET Commun. 4(4), 428–436 (2010)CrossRefGoogle Scholar
  15. 15.
    Xu, Y.L., Zhang, H.S., Han, Z.H.: The performance analysis of spectrum sensing algorithms based on wavelet edge detection. In: Proceeding of 5th International Conference on Wireless Communications, Networking and Mobile Computing (WiCom), pp. 1–4 (2009)Google Scholar
  16. 16.
    Sedighi, S., Taherpour, A., Monfared, S.: Bayesian generalised likelihood ratio test-based multiple antenna spectrum sensing for cognitive radios. IET Commun. 7(18), 2151–2165 (2013)CrossRefGoogle Scholar
  17. 17.
    Sun, W., Huang, Z., Wang, F., Wang, X.: Compressive wideband spectrum sensing based on single channel. Electron. Lett. 51(9), 693–695 (2015)CrossRefGoogle Scholar
  18. 18.
    Jaglan, R.R., Sarowa, S., Mustafa, R., Agrawal, S., Kumar, N.: Comparative study of single-user spectrum sensing techniques in cognitive radio networks. Procedia Comput. Sci. 58, 121–128 (2015)CrossRefGoogle Scholar
  19. 19.
    Yucek, T., Arslan, H.: A survey of spectrum sensing algorithms for cognitive radio applications. IEEE Commun. Surv. Tutor. 11(1), 116–130 (2009)CrossRefGoogle Scholar
  20. 20.
    Bhargavi, D., Murthy, C.: Performance comparison of energy, matched-filter and cyclostationarity-based spectrum sensing. In: Proceeding IEEE 11th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), pp.1–5 (2010)Google Scholar
  21. 21.
    So, J.: Energy-efficient cooperative spectrum sensing with a logical multi-bit combination rule. IEEE Commun. Lett. 20(12), 2538–2541 (2016)CrossRefGoogle Scholar
  22. 22.
    Awin, F.A., Abdel-Raheem, E., Ahmadi, M.: Designing an optimal energy efficient cluster-based spectrum sensing for cognitive radio networks. IEEE Commun. Lett. 20(9), 1884–1887 (2016)CrossRefGoogle Scholar
  23. 23.
    Cichoń, K., Kliks, A., Bogucka, H.: Energy-efficient cooperative spectrum sensing: A survey. IEEE Commun. Surv. Tutor. 18(3), 1861–1886CrossRefGoogle Scholar
  24. 24.
    Jiao, Y., Yin, P., Joe, I.: Clustering scheme for cooperative spectrum sensing in cognitive radio networks. IET Commun. 10(13), 1590–1595 (2016)CrossRefGoogle Scholar
  25. 25.
    Paul, A., Maity, S.P.: Kernel fuzzy c-means clustering on energy detection based cooperative spectrum sensing. Digital Commun. Netw. 2(4), 196–205 (2016)CrossRefGoogle Scholar
  26. 26.
    Maity, S.P., Chatterjee, S., Acharya, T.: On optimal fuzzy c-means clustering for energy efficient cooperative spectrum sensing in cognitive radio networks. Digital Signal Process. 49(C), 104–115CrossRefGoogle Scholar
  27. 27.
    Huang, S., Chen, H., Zhang, Y., Zhao, F.: Energy-efficient cooperative spectrum sensing with amplify-and-forward relaying. IEEE Commun. Lett. 16(4), 450–453 (2012)CrossRefGoogle Scholar
  28. 28.
    Chatterjee, S., Banerjee, A., Acharya, T., Maity, S.P.: Fuzzy c-means clustering in energy detection for cooperative spectrum sensing in cognitive radio system. Proc. Mult. Access Commun. 8715, 84–95 (2014)Google Scholar
  29. 29.
    Graves, D., Pedrycz, W.: Kernel-based fuzzy clustering and fuzzy clustering : A comparative experimental study. Fuzzy Sets Syst. 161(4), 522–543 (2010)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Shawe-Taylor, J., Cristianini, N.: Kernel Methods for Pattern Analysis. Cambridge University Press, New York, NY, USA (2004)CrossRefzbMATHGoogle Scholar
  31. 31.
    Zhao, X., Zhang, S.: In: An Improved KFCM Algorithm Based on Artificial Bee Colony, pp. 190–198. Springer, Berlin Heidelberg, Berlin, Heidelberg (2011)Google Scholar
  32. 32.
    Pal, N.R., Pal, K., Keller, J.M., Bezdek, J.C.: A possibilistic fuzzy c-means clustering algorithm. IEEE Transactions on Fuzzy Systems 13(4), 517–530 (2005)CrossRefGoogle Scholar
  33. 33.
    Shang, R., Tian, P., Wen, A., Liu, W., Jiao, L.: An intuitionistic fuzzy possibilistic c-means clustering based on genetic algorithm. In: Proceedings of IEEE Congress on Evolutionary Computation (CEC), July 2016, pp. 941–947Google Scholar
  34. 34.
    Paul, A., Maity, S.P.: On energy efficient cooperative spectrum sensing using possibilistic fuzzy c-means clustering. In: Intelligence, Computational (ed.) Communications, and Business Analytics, pp. 382–396. Springer Singapore, Singapore (2017)Google Scholar
  35. 35.
    Gao, W., Yen, G.G., Liu, S.: A cluster-based differential evolution with self-adaptive strategy for multimodal optimization. IEEE Trans. Cybern. 44(8), 1314–1327 (2014)CrossRefGoogle Scholar
  36. 36.
    Wang, J., Zhang, W., Zhang, J.: Cooperative differential evolution with multiple populations for multiobjective optimization. IEEE Trans. Cybern. 46(12), 2848–2861 (2016)CrossRefGoogle Scholar
  37. 37.
    Saha, A., Konar, A., Rakshit, P., Ralescu, A.L., Nagar, A.K.: Olfaction recognition by eeg analysis using differential evolution induced hopfield neural net. In: Proceedings of International Joint Conference on Neural Networks (IJCNN), August 2013, pp. 1–8Google Scholar
  38. 38.
    Bhattacharyya, S., Rakshiti, P., Konar, A., Tibarewala, D.N., Das, S., Nagar, A.K.: Differential evolution with temporal difference q-learning based feature selection for motor imagery eeg data. In: Proceedings of IEEE Symposium on Computational Intelligence, Cognitive Algorithms, Mind, and Brain (CCMB), April 2013, pp. 138–145Google Scholar
  39. 39.
    Iliya, S., Goodyer, E., Shell, J., Gongora, M., Gow, J.: Optimized neural network using differential evolutionary and swarm intelligence optimization algorithms for rf power prediction in cognitive radio network: A comparative study. In: Proceedings of IEEE 6th International Conference on Adaptive Science Technology (ICAST), October 2014, pp. 1–7Google Scholar
  40. 40.
    Anumandla, K.K., Peesapati, R., Sabat, S.L., Udgata, S.K., Abraham, A.: Field programmable gate arrays-based differential evolution coprocessor: a case study of spectrum allocation in cognitive radio network. IET Comput. Digital Tech. 7(5), 221–234 (2013)CrossRefGoogle Scholar
  41. 41.
    Anumandla, K.K., Akella, B., Sabat, S.L., Udgata, S.K.: Spectrum allocation in cognitive radio networks using multi-objective differential evolution algorithm. In: Proceedings of International Conference on Signal Processing and Integrated Networks (SPIN), February 2015, pp. 264–269Google Scholar
  42. 42.
    Lina, C.: Power control algorithm for cognitive radio based on differential evolution. In: Proceedings of International Conference on Computer Application and System Modeling (ICCASM 2010), Vol. 7, October 2010, V7-474–V7-478Google Scholar
  43. 43.
    Zhang, X., Zhang, X.: Population-adaptive differential evolution-based power allocation algorithm for cognitive radio networks. EURASIP J. Wirel. Commun. Netw. 2016(1), 219 (2016)CrossRefGoogle Scholar
  44. 44.
    Almeida, R.J., Kaymak, U., Sousa, J.M.C.: Fuzzy rule extraction from typicality and membership partitions. In: Proceedings of IEEE International Conference on Fuzzy Systems (IEEE World Congress on Computational Intelligence, June 2008, pp. 1964–1970Google Scholar
  45. 45.
    Hu, C., Yan, X.: A hybrid differential evolution algorithm integrated with an ant system and its application. Comput. Math. Appl. 62(1), 32–43 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    Nobakhti, A., Wang, H.: A simple self-adaptive differential evolution algorithm with application on the alstom gasifier. Appl. Soft Comput. 8(1), 350–370 (2008)CrossRefGoogle Scholar
  47. 47.
    Epitropakis, M.G., Tasoulis, D.K., Pavlidis, N.G., Plagianakos, V.P., Vrahatis, M.N.: Enhancing differential evolution utilizing proximity-based mutation operators. IEEE Trans. Evol. Comput. 15(1), 99–119 (2011)CrossRefGoogle Scholar
  48. 48.
    Sarker, R.A., Elsayed, S.M., Ray, T.: Differential evolution with dynamic parameters selection for optimization problems. IEEE Trans. Evol. Comput. 18(5), 689–707 (2014)CrossRefGoogle Scholar
  49. 49.
    Li, X., Yin, M.: Modified differential evolution with self-adaptive parameters method. J. Comb. Optim. 31(2), 546–576 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  50. 50.
    Storn, R., Price, K.: Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 11(4), 341–359 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  51. 51.
    Gong, W., Cai, Z., Wang, Y.: Repairing the crossover rate in adaptive differential evolution. Appl. Soft Comput. 15, 149–168 (2014)CrossRefGoogle Scholar
  52. 52.
    Mohamed, A.W., Sabry, H.Z., Abd-Elaziz, T.: Real parameter optimization by an effective differential evolution algorithm. Egypt. Inf. J. 14(1), 37–53 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of Information TechnologyIndian Institute of Engineering Science and Technology, ShibpurHowrahIndia

Personalised recommendations