Different Length Genetic Algorithm-Based Clustering of Indian Stocks for Portfolio Optimization

Part of the Studies in Computational Intelligence book series (SCI, volume 687)


In this chapter, we propose a model for portfolio construction using different length genetic algorithm (GA)-based clustering of Indian stocks. First, stocks of different companies, chosen from different industries, are classified based on their returns per unit of risk using an unsupervised method of different length genetic algorithm. Then, the centroids of the algorithm are again classified by the same algorithm. So vertical clustering (clustering of stocks by returns per unit of risk for each day) followed by horizontal clustering (clustering of the centroids over time) eventually produces a limited number of stocks. The Markowitz model is applied to determine the weights of the stocks in the portfolio. The results are also compared with some well-known existing algorithms. They indicate that the proposed GA-based clustering algorithm outperforms all the other algorithms.


Different length genetic algorithm Horizontal clustering Markowitz model Portfolio optimization Return Risk Vertical clustering 


  1. 1.
    Abdelaziz, F.B., Masmoudi, M.: A multiple objective stochastic portfolio selection problem with random beta. Int. Trans. Oper. Res. 21(6), 919–933 (2014).  https://doi.org/10.1111/itor.12037MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Anagnostopoulos, K.P., Mamanis, G.: Multiobjective evolutionary algorithms for complex portfolio optimization problems. Comput. Manag. Sci. 8(3), 259–279 (2011).  https://doi.org/10.1007/s10287-009-0113-8MathSciNetCrossRefGoogle Scholar
  3. 3.
    Azevedo, C.R.B., Zuben F.J.V.: Anticipatory stochastic multi-objective optimization for uncertainty handling in portfolio selection. In: 2013 IEEE Congress on Evolutionary Computation, pp. 157–164 (2013).  https://doi.org/10.1109/CEC.2013.6557566
  4. 4.
    Barros, M.D.O., Costa, H.R., Figueiredo, F.V., Rocha, A.R.C.D.: Multiobjective optimization for project portfolio selection. In: Proceedings of the 14th Annual Conference Companion on Genetic and Evolutionary Computation GECCO ’12, pp. 1541–1542 (2012). ACM, New York, NY, USA.  https://doi.org/10.1145/2330784.2331037
  5. 5.
    Doerner, K., Gutjahr, W.J., Hartl, R.F., Strauss, C., Stummer, C.: Pareto ant colony optimization: a metaheuristic approach to multiobjective portfolio selection. Ann. Oper. Res. 131(1), 79–99 (2004).  https://doi.org/10.1023/B:ANOR.0000039513.99038.c6MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Duran, C.F., Cotta, C., Fernández, A.J.: Evolutionary optimization for multiobjective portfolio selection under Markowitz’s model with application to the caracas stock exchange, pp. 489–509. Springer, Berlin, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-00267-0_18CrossRefGoogle Scholar
  7. 7.
    Esmin, A.A.A., Pereira, D.L., de Arajo, F.P.A.: Study of different approach to clustering data by using particle swarm optimization algorithm. In: Proceedings of the IEEE World Congress on Evolutionary Computation (CEC, 2008), pp. 1817–1822. Hong Kong, China (2008)Google Scholar
  8. 8.
    Fang, Y., Lai, K., Wang, S.Y.: Portfolio rebalancing model with transaction costs based on fuzzy decision theory. Eur. J. Oper. Res. 175(2), 879–893 (2006).  https://doi.org/10.1016/j.ejor.2005.05.020, http://www.sciencedirect.com/science/article/pii/S0377221705005102CrossRefMATHGoogle Scholar
  9. 9.
    Goldberg, G.: Genetic algorithm in search, optimization and machine learning. Addison-Wesley (1989)Google Scholar
  10. 10.
    Gose, E., Johnsonbough, R., Jost, S.: Pattern recognition and image analysis. Prentice-Hall (1996)Google Scholar
  11. 11.
    Gupta, P., Inuiguchi, M., Mehlawat, M.K.: A hybrid approach for constructing suitable and optimal portfolios. Exp. Syst. Appl. 38(5), 5620–5632 (2011).  https://doi.org/10.1016/j.eswa.2010.073, http://www.sciencedirect.com/science/article/pii/S0957417410012170CrossRefGoogle Scholar
  12. 12.
    Gupta, P., Mehlawat, M.K., Mittal, G.: Asset portfolio optimization using support vector machines and real-coded genetic algorithm. J. Global Opt. 53(2), 297–315 (2012).  https://doi.org/10.1007/s10898-011-9692-3MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Gupta, P., Mehlawat, M.K., Saxena, A.: A hybrid approach to asset allocation with simultaneous consideration of suitability and optimality. Inf. Sci. 180(11), 2264–2285 (2010).  https://doi.org/10.1016/j.ins.2010.02.007, http://www.sciencedirect.com/science/article/pii/S0020025510000630CrossRefGoogle Scholar
  14. 14.
    Gupta, P., Mehlawat, M.K., Saxena, A.: Asset portfolio optimization using fuzzy mathematical programming. Inf. Sci. 178(6), 1734–1755 (2008).  https://doi.org/10.1016/j.ins.2007.10.025, http://www.sciencedirect.com/science/article/pii/S0020025507005221MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Gupta, P., Mittal, G., Mehlawat, M.K.: Multiobjective expected value model for portfolio selection in fuzzy environment. Opt. Lett. 7(8), 1765–1791 (2013).  https://doi.org/10.1007/s11590-012-0521-5MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Holland, J.H.: Adaptation in Natural and Artificial Systems. MIT Press, Cambridge, MA, USA (1992)Google Scholar
  17. 17.
    Javier, L., Laura, L., Armando, G.: Varmopso: multi-objective particle swarm optimization with variable population size. In: Advances in Artificial Intelligence IBERAMIA. Lecture Notes in Computer Science, vol. 6433. Springer, Berlin, Heidelberg (2010)Google Scholar
  18. 18.
    Katari, V., Ch, S., Satapathy, R., Ieee, M., Murthy, J., Reddy, P.P.: Hybridized improved genetic algorithm with variable length chromosome for image clustering abstract. Int. J. Comput. Sci. Netw. Secur. 7(11), 121–131 (2007)Google Scholar
  19. 19.
    Konno, H., Yamazaki, H.: Mean-absolute deviation portfolio optimization model and its applications to Tokyo stock market. Manage. Sci. 37(5), 519–531 (1991).  https://doi.org/10.1287/mnsc.37.5.519CrossRefGoogle Scholar
  20. 20.
    Li, X., Qin, Z., Kar, S.: Mean-variance-skewness model for portfolio selection with fuzzy returns. Eur. J. Oper. Res. 202(1), 239–247 (2010).  https://doi.org/10.1016/j.ejor.2009.05.003, http://www.sciencedirect.com/science/article/pii/S0377221709003154CrossRefMATHGoogle Scholar
  21. 21.
    Mansini, R., Ogryczak, W., Speranza, M.G.: Linear models for portfolio optimization, Springer International Publishing, Cham, pp. 19–45.  https://doi.org/10.1007/978-3-319-18482-1_2Google Scholar
  22. 22.
    Markowitz, H.: Portfolio selection. J. Financ. 7(1), 77–91 (1952).  https://doi.org/10.1111/j.1540-6261.1952.tb01525.x
  23. 23.
    Maulik, U., Bandyopadhyay, S.: Fuzzy partitioning using a real-coded variable-length genetic algorithm for pixel classification. IEEE Trans. Geosci. Remote. Sens. 41(5), 1075–1081 (2003).  https://doi.org/10.1109/TGRS.2003.810924CrossRefGoogle Scholar
  24. 24.
    Michalewicz, Z.: Genetic algorithms + data structures = evolution programs, Springer (1996)CrossRefMATHGoogle Scholar
  25. 25.
    Mukhopadhyay, S., Mandal, P., Pal, T., Mandal, J.K.: Image Clustering Based on Different Length Particle Swarm Optimization (DPSO), Springer International Publishing, Cham, pp. 711–718 (2015).  https://doi.org/10.1007/978-3-319-11933-5_80Google Scholar
  26. 26.
    Mukhopadhyay, S., Mandal, J.K., Pal, T.: Variable length PSO-based image clustering for image denoising. In: Handbook of Research on Natural Computing for Optimization Problems. IGI Global, Hershey (2016)Google Scholar
  27. 27.
    Mukhopadhyay, S., Mandal, J.K.: Adaptive median filtering based on unsupervised classification of pixels. In: Handbook of Research on Computational Intelligence for Engineering, Science and Business. IGI Global, Hershey (2013)Google Scholar
  28. 28.
    Mukhopadhyay, S., Mandal, J.K.: Denoising of digital images through pso based pixel classification. Central Eur. J. Comput. Sci. 3(4), 158–172 (2013)Google Scholar
  29. 29.
    Omran, M., Engelbrecht, A.P., Salman, A.: Particle swarm optimization method for image clustering. Int. J. Pattern Recognit. Artif. Int. 19, 297–322 (2005)CrossRefGoogle Scholar
  30. 30.
    Pakhira, M.K., Bandyopadhyay, S., Maulik, U.: A study of some fuzzy cluster validity indices, genetic clustering and application to pixel classification. Fuzzy Sets Syst. 155(2), 191–214 (2005).  https://doi.org/10.1016/j.fss.2005.04.009, http://www.sciencedirect.com/science/article/pii/S0165011405001661MathSciNetCrossRefGoogle Scholar
  31. 31.
    Pakhira, M.K., Bandyopadhyay, S., Maulik, U.: Validity index for crisp and fuzzy clusters. Pattern Recognit. 37(3), 487–501 (2004).  https://doi.org/10.1016/j.patcog.2003.06.005, http://www.sciencedirect.com/science/article/pii/S0031320303002838CrossRefMATHGoogle Scholar
  32. 32.
    Qiu, M., Liu, L., Ding, H., Dong, J., Wang, W.: A new hybrid variable-length GA and PSO algorithm in continuous facility location problem with capacity and service level constraints. In: IEEE/INFORMS International Conference on Service Operations, Logistics and Informatics, 2009. SOLI ’09, pp. 546–551 (2009)Google Scholar
  33. 33.
    Saborido, R., Ruiz, A.B., Bermdez, J.D., Vercher, E., Luque, M.: Evolutionary multi-objective optimization algorithms for fuzzy portfolio selection. Appl. Soft Comput. 39, 48–63.  https://doi.org/10.1016/j.asoc.2015.11.005, http://www.sciencedirect.com/science/article/pii/S1568494615007164CrossRefGoogle Scholar
  34. 34.
    Srikanth, R., George, R., Warsi, N., Prabhu, D., Petry, F., Buckles, B.: A variable-length genetic algorithm for clustering and classification. Pattern Recognit. Lett. 16(8), 789–800 (1995).  https://doi.org/10.1016/0167-8655(95)00043-G, http://www.sciencedirect.com/science/article/pii/016786559500043GCrossRefGoogle Scholar
  35. 35.
    Tan, P., Steinbach, M., Kumar, V.: Introduction to data mining, Pearson Education (2006)Google Scholar
  36. 36.
    Wang, B., Watada, J.: Multiobjective particle swarm optimization for a novel fuzzy portfolio selection problem. IEEJ Trans. Electr. Electron. Eng. 8(2), 146–154 (2013).  https://doi.org/10.1002/tee.21834CrossRefGoogle Scholar
  37. 37.
    Wong, M.T., He, X., Yeh, W.C.: Image clustering using particle swarm optimization. In: 2011 IEEE Congress on Evolutionary Computation (CEC), pp. 262–268 (2011)Google Scholar
  38. 38.
  39. 39.
    Zadeh, L.A.: Toward a generalized theory of uncertainty (GTU) an outline. Inf. Sci. 172(12), 1–40 (2005).  https://doi.org/10.1016/j.ins.2005.01.017, http://www.sciencedirect.com/science/article/pii/S002002550500054XMathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of Computer Science & EngineeringAssam UniversitySilcharIndia
  2. 2.Department of Economics and FinanceCalcutta Business SchoolKolkataIndia

Personalised recommendations