Different Length Genetic Algorithm-Based Clustering of Indian Stocks for Portfolio Optimization

  • Somnath Mukhopadhyay
  • Tamal Datta Chaudhuri
Part of the Studies in Computational Intelligence book series (SCI, volume 687)


In this chapter, we propose a model for portfolio construction using different length genetic algorithm (GA)-based clustering of Indian stocks. First, stocks of different companies, chosen from different industries, are classified based on their returns per unit of risk using an unsupervised method of different length genetic algorithm. Then, the centroids of the algorithm are again classified by the same algorithm. So vertical clustering (clustering of stocks by returns per unit of risk for each day) followed by horizontal clustering (clustering of the centroids over time) eventually produces a limited number of stocks. The Markowitz model is applied to determine the weights of the stocks in the portfolio. The results are also compared with some well-known existing algorithms. They indicate that the proposed GA-based clustering algorithm outperforms all the other algorithms.


Different length genetic algorithm Horizontal clustering Markowitz model Portfolio optimization Return Risk Vertical clustering 


  1. 1.
    Abdelaziz, F.B., Masmoudi, M.: A multiple objective stochastic portfolio selection problem with random beta. Int. Trans. Oper. Res. 21(6), 919–933 (2014). Scholar
  2. 2.
    Anagnostopoulos, K.P., Mamanis, G.: Multiobjective evolutionary algorithms for complex portfolio optimization problems. Comput. Manag. Sci. 8(3), 259–279 (2011). Scholar
  3. 3.
    Azevedo, C.R.B., Zuben F.J.V.: Anticipatory stochastic multi-objective optimization for uncertainty handling in portfolio selection. In: 2013 IEEE Congress on Evolutionary Computation, pp. 157–164 (2013).
  4. 4.
    Barros, M.D.O., Costa, H.R., Figueiredo, F.V., Rocha, A.R.C.D.: Multiobjective optimization for project portfolio selection. In: Proceedings of the 14th Annual Conference Companion on Genetic and Evolutionary Computation GECCO ’12, pp. 1541–1542 (2012). ACM, New York, NY, USA.
  5. 5.
    Doerner, K., Gutjahr, W.J., Hartl, R.F., Strauss, C., Stummer, C.: Pareto ant colony optimization: a metaheuristic approach to multiobjective portfolio selection. Ann. Oper. Res. 131(1), 79–99 (2004). Scholar
  6. 6.
    Duran, C.F., Cotta, C., Fernández, A.J.: Evolutionary optimization for multiobjective portfolio selection under Markowitz’s model with application to the caracas stock exchange, pp. 489–509. Springer, Berlin, Heidelberg (2009). Scholar
  7. 7.
    Esmin, A.A.A., Pereira, D.L., de Arajo, F.P.A.: Study of different approach to clustering data by using particle swarm optimization algorithm. In: Proceedings of the IEEE World Congress on Evolutionary Computation (CEC, 2008), pp. 1817–1822. Hong Kong, China (2008)Google Scholar
  8. 8.
    Fang, Y., Lai, K., Wang, S.Y.: Portfolio rebalancing model with transaction costs based on fuzzy decision theory. Eur. J. Oper. Res. 175(2), 879–893 (2006)., Scholar
  9. 9.
    Goldberg, G.: Genetic algorithm in search, optimization and machine learning. Addison-Wesley (1989)Google Scholar
  10. 10.
    Gose, E., Johnsonbough, R., Jost, S.: Pattern recognition and image analysis. Prentice-Hall (1996)Google Scholar
  11. 11.
    Gupta, P., Inuiguchi, M., Mehlawat, M.K.: A hybrid approach for constructing suitable and optimal portfolios. Exp. Syst. Appl. 38(5), 5620–5632 (2011)., Scholar
  12. 12.
    Gupta, P., Mehlawat, M.K., Mittal, G.: Asset portfolio optimization using support vector machines and real-coded genetic algorithm. J. Global Opt. 53(2), 297–315 (2012). Scholar
  13. 13.
    Gupta, P., Mehlawat, M.K., Saxena, A.: A hybrid approach to asset allocation with simultaneous consideration of suitability and optimality. Inf. Sci. 180(11), 2264–2285 (2010)., Scholar
  14. 14.
    Gupta, P., Mehlawat, M.K., Saxena, A.: Asset portfolio optimization using fuzzy mathematical programming. Inf. Sci. 178(6), 1734–1755 (2008)., Scholar
  15. 15.
    Gupta, P., Mittal, G., Mehlawat, M.K.: Multiobjective expected value model for portfolio selection in fuzzy environment. Opt. Lett. 7(8), 1765–1791 (2013). Scholar
  16. 16.
    Holland, J.H.: Adaptation in Natural and Artificial Systems. MIT Press, Cambridge, MA, USA (1992)Google Scholar
  17. 17.
    Javier, L., Laura, L., Armando, G.: Varmopso: multi-objective particle swarm optimization with variable population size. In: Advances in Artificial Intelligence IBERAMIA. Lecture Notes in Computer Science, vol. 6433. Springer, Berlin, Heidelberg (2010)Google Scholar
  18. 18.
    Katari, V., Ch, S., Satapathy, R., Ieee, M., Murthy, J., Reddy, P.P.: Hybridized improved genetic algorithm with variable length chromosome for image clustering abstract. Int. J. Comput. Sci. Netw. Secur. 7(11), 121–131 (2007)Google Scholar
  19. 19.
    Konno, H., Yamazaki, H.: Mean-absolute deviation portfolio optimization model and its applications to Tokyo stock market. Manage. Sci. 37(5), 519–531 (1991). Scholar
  20. 20.
    Li, X., Qin, Z., Kar, S.: Mean-variance-skewness model for portfolio selection with fuzzy returns. Eur. J. Oper. Res. 202(1), 239–247 (2010)., Scholar
  21. 21.
    Mansini, R., Ogryczak, W., Speranza, M.G.: Linear models for portfolio optimization, Springer International Publishing, Cham, pp. 19–45. Scholar
  22. 22.
    Markowitz, H.: Portfolio selection. J. Financ. 7(1), 77–91 (1952).
  23. 23.
    Maulik, U., Bandyopadhyay, S.: Fuzzy partitioning using a real-coded variable-length genetic algorithm for pixel classification. IEEE Trans. Geosci. Remote. Sens. 41(5), 1075–1081 (2003). Scholar
  24. 24.
    Michalewicz, Z.: Genetic algorithms + data structures = evolution programs, Springer (1996)CrossRefzbMATHGoogle Scholar
  25. 25.
    Mukhopadhyay, S., Mandal, P., Pal, T., Mandal, J.K.: Image Clustering Based on Different Length Particle Swarm Optimization (DPSO), Springer International Publishing, Cham, pp. 711–718 (2015). Scholar
  26. 26.
    Mukhopadhyay, S., Mandal, J.K., Pal, T.: Variable length PSO-based image clustering for image denoising. In: Handbook of Research on Natural Computing for Optimization Problems. IGI Global, Hershey (2016)Google Scholar
  27. 27.
    Mukhopadhyay, S., Mandal, J.K.: Adaptive median filtering based on unsupervised classification of pixels. In: Handbook of Research on Computational Intelligence for Engineering, Science and Business. IGI Global, Hershey (2013)Google Scholar
  28. 28.
    Mukhopadhyay, S., Mandal, J.K.: Denoising of digital images through pso based pixel classification. Central Eur. J. Comput. Sci. 3(4), 158–172 (2013)Google Scholar
  29. 29.
    Omran, M., Engelbrecht, A.P., Salman, A.: Particle swarm optimization method for image clustering. Int. J. Pattern Recognit. Artif. Int. 19, 297–322 (2005)CrossRefGoogle Scholar
  30. 30.
    Pakhira, M.K., Bandyopadhyay, S., Maulik, U.: A study of some fuzzy cluster validity indices, genetic clustering and application to pixel classification. Fuzzy Sets Syst. 155(2), 191–214 (2005)., Scholar
  31. 31.
    Pakhira, M.K., Bandyopadhyay, S., Maulik, U.: Validity index for crisp and fuzzy clusters. Pattern Recognit. 37(3), 487–501 (2004)., Scholar
  32. 32.
    Qiu, M., Liu, L., Ding, H., Dong, J., Wang, W.: A new hybrid variable-length GA and PSO algorithm in continuous facility location problem with capacity and service level constraints. In: IEEE/INFORMS International Conference on Service Operations, Logistics and Informatics, 2009. SOLI ’09, pp. 546–551 (2009)Google Scholar
  33. 33.
    Saborido, R., Ruiz, A.B., Bermdez, J.D., Vercher, E., Luque, M.: Evolutionary multi-objective optimization algorithms for fuzzy portfolio selection. Appl. Soft Comput. 39, 48–63., Scholar
  34. 34.
    Srikanth, R., George, R., Warsi, N., Prabhu, D., Petry, F., Buckles, B.: A variable-length genetic algorithm for clustering and classification. Pattern Recognit. Lett. 16(8), 789–800 (1995)., Scholar
  35. 35.
    Tan, P., Steinbach, M., Kumar, V.: Introduction to data mining, Pearson Education (2006)Google Scholar
  36. 36.
    Wang, B., Watada, J.: Multiobjective particle swarm optimization for a novel fuzzy portfolio selection problem. IEEJ Trans. Electr. Electron. Eng. 8(2), 146–154 (2013). Scholar
  37. 37.
    Wong, M.T., He, X., Yeh, W.C.: Image clustering using particle swarm optimization. In: 2011 IEEE Congress on Evolutionary Computation (CEC), pp. 262–268 (2011)Google Scholar
  38. 38.
  39. 39.
    Zadeh, L.A.: Toward a generalized theory of uncertainty (GTU) an outline. Inf. Sci. 172(12), 1–40 (2005)., Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of Computer Science & EngineeringAssam UniversitySilcharIndia
  2. 2.Department of Economics and FinanceCalcutta Business SchoolKolkataIndia

Personalised recommendations