Skip to main content

Modelling and Analysis of Circular Cylindrical Shells

  • Chapter
  • First Online:
Mechanics of Composite Structural Elements

Abstract

In the previous Chaps. 7 and 8 we have considered beams and plates, i.e. one- and two-dimensional structural elements with straight axes and plane reference surfaces. Thin-walled laminated or sandwich shells can be also modelled as two-dimensional structural elements but with single or double curved reference surfaces. To cover shells of general shape a special book is necessary, because a general treatment of shells of any geometry demands a detailed application of differential geometry relations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Holm Altenbach .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Altenbach, H., Altenbach, J., Kissing, W. (2018). Modelling and Analysis of Circular Cylindrical Shells. In: Mechanics of Composite Structural Elements. Springer, Singapore. https://doi.org/10.1007/978-981-10-8935-0_9

Download citation

Publish with us

Policies and ethics