Luminescent Lanthanide Coordination Zippers with Dense-Packed Structures for High Energy Transfer Efficiencies
Chapter
First Online:
Abstract
Novel Eu(III) coordination polymers [Eu(hfa)3(dpt)] n [dpt: 2,5-bis(diphenylphosphoryl)thiophene] and [Eu(hfa)3(dpedot)] n [dpedot: 3,4-bis(diphenylphosphoryl)ethylenedioxythiophene] were designed for dense structures with high energy transfer efficiency. The zig-zag orientation of single polymer chains induced the formation of dense-packed coordination structures with multiple inter-molecular hydrogen bonds. These polymers exhibited high intrinsic emission quantum yields (~80%) due to their asymmetrical and low-vibrational coordination structures. The significant energy transfer efficiencies of up to 80% were also achieved.
Keywords
Europium Coordination polymer Luminescence Energy transferReferences
- 1.J.H. Burroughes, D.D.C. Bradley, A.R. Brown, R.N. Marks, K. Mackay, R.H. Friend, P.L. Burn, A.B. Holmes, Nature 347, 539–541 (1990)CrossRefGoogle Scholar
- 2.C.D. Dimitrakopoulos, P.R.L. Malenfant, Adv. Mater. 14, 99–117 (2002)CrossRefGoogle Scholar
- 3.E.G. Moore, A.P.S. Samuel, K.N. Raymond, Acc. Chem. Res. 42, 542–552 (2009)CrossRefGoogle Scholar
- 4.S.V. Eliseeva, J.-C.G. Bünzli, Chem. Soc. Rev. 39, 189–227 (2010)CrossRefGoogle Scholar
- 5.M. Schaferling, Angew. Chem. Int. Ed. 51, 3532–3554 (2012)CrossRefGoogle Scholar
- 6.J.F. Callan, A.P. de Silva, D.C. Magri, Tetrahedron 61, 8551–8588 (2005)CrossRefGoogle Scholar
- 7.A.P. de Silva, H.Q.N. Gunaratne, T. Gunnlaugsson, A.J.M. Huxley, C.P. McCoy, J.T. Rademacher, T.E. Rice, Chem. Rev. 97, 1515–1566 (1997)CrossRefGoogle Scholar
- 8.S.W. Thomas, G.D. Joly, T.M. Swager, Chem. Rev. 107, 1339–1386 (2007)CrossRefGoogle Scholar
- 9.C. Adachi, M.A. Baldo, M.E. Thompson, S.R. Forrest, J. Appl. Phys. 90, 5048–5051 (2001)CrossRefGoogle Scholar
- 10.A. de Bettencourt-Dias, Dalton Trans. 22, 2229–2241 (2007)CrossRefGoogle Scholar
- 11.J.-C.G. Bünzli, C. Piguet, Chem. Soc. Rev. 34, 1048–1077 (2005)CrossRefGoogle Scholar
- 12.K. Binnemans, Chem. Rev. 109, 4283–4374 (2009)CrossRefGoogle Scholar
- 13.T. Gunnlaugsson, M. Glynn, G.M. Tocci, P.E. Kruger, F.M. Pfeffer, Coord. Chem. Rev. 250, 3094–3117 (2006)CrossRefGoogle Scholar
- 14.G.E. Khalil, K. Lau, G.D. Phelan, B. Carlson, M. Gouterman, J.B. Callis, L.R. Dalton, Rev. Sci. Instrum. 75, 192–206 (2004)CrossRefGoogle Scholar
- 15.N.B.D. Lima, S.M.C. Goncalves, S.A. Junior, A.M. Simas, Sci. Rep. 3 (2013)Google Scholar
- 16.A. de Bettencourt-Dias, P.S. Barber, S. Viswanathan, Coord. Chem. Rev. 273, 165–200 (2014)CrossRefGoogle Scholar
- 17.L. Armelao, S. Quici, F. Barigelletti, G. Accorsi, G. Bottaro, M. Cavazzini, E. Tondello, Coord. Chem. Rev. 254, 487–505 (2010)CrossRefGoogle Scholar
- 18.K. Binnemans, R. Van Deun, C. Gorller-Walrand, S.R. Collinson, F. Martin, D.W. Bruce, C. Wickleder, Phys. Chem. Chem. Phys. 2, 3753–3757 (2000)CrossRefGoogle Scholar
- 19.M.H.V. Werts, R.T.F. Jukes, J.W. Verhoeven, Phys. Chem. Chem. Phys. 4, 1542–1548 (2002)CrossRefGoogle Scholar
- 20.H.B. Zhang, L.J. Zhou, J. Wei, Z.H. Li, P. Lin, S.W. Du, J. Mater. Chem. 22, 21210–21217 (2012)CrossRefGoogle Scholar
- 21.M.S. Liu, Q.Y. Yu, Y.P. Cai, C.Y. Su, X.M. Lin, X.X. Zhou, J.W. Cai, Cryst. Growth Des. 8, 4083–4091 (2008)CrossRefGoogle Scholar
- 22.J. Rocha, L.D. Carlos, F.A.A. Paz, D. Ananias, Chem. Soc. Rev. 40, 926–940 (2011)CrossRefGoogle Scholar
- 23.S.V. Eliseeva, D.N. Pleshkov, K.A. Lyssenko, L.S. Lepnev, J.-C.G. Bünzli, N.P. Kuzmina, Inorg. Chem. 49, 9300–9311 (2010)CrossRefGoogle Scholar
- 24.K. Miyata, T. Ohba, A. Kobayashi, M. Kato, T. Nakanishi, K. Fushimi, Y. Hasegawa, ChemPlusChem 77, 277–280 (2012)CrossRefGoogle Scholar
- 25.A. D’Aleo, F. Pointillart, L. Ouahab, C. Andraud, O. Maury, Coord. Chem. Rev. 256, 1604–1620 (2012)CrossRefGoogle Scholar
- 26.S.V. Eliseeva, O.V. Kotova, F. Gumy, S.N. Semenov, V.G. Kessler, L.S. Lepnev, J.-C.G. Bünzli, N.P. Kuzmina, J. Phys. Chem. A 112, 3614–3626 (2008)CrossRefGoogle Scholar
- 27.E.R. Trivedi, S.V. Eliseeva, J. Jankolovits, M.M. Olmstead, S. Petoud, V.L. Pecoraro, J. Am. Chem. Soc. 136, 1526–1534 (2014)CrossRefGoogle Scholar
- 28.Y. Hasegawa, R. Hieda, K. Miyata, T. Nakagawa, T. Kawai, Eur. J. Inorg. Chem. 32, 4978–4984 (2011)CrossRefGoogle Scholar
- 29.J.D. Xu, E. Radkov, M. Ziegler, K.N. Raymond, Inorg. Chem. 39, 4156–4164 (2000)CrossRefGoogle Scholar
- 30.A. Aebischer, F. Gumy, J.-C.G. Bünzli, Phys. Chem. Chem. Phys. 11, 1346–1353 (2009)CrossRefGoogle Scholar
- 31.R. Pavithran, N.S.S. Kumar, S. Biju, M.L.P. Reddy, S.A. Junior, R.O. Freire, Inorg. Chem. 45, 2184–2192 (2006)CrossRefGoogle Scholar
- 32.K. Binnemans, Coord. Chem. Rev. 295, 1–45 (2015)CrossRefGoogle Scholar
- 33.G.R. Desiraju, T. Steiner, The Weak Hydrogen Bond in Structural Chemistry and Biology (Oxford Univ. Press, 1999)Google Scholar
- 34.S.F. Mason, R.D. Peacock, B. Stewart, Chem. Phys. Lett. 29, 149–153 (1974)CrossRefGoogle Scholar
- 35.S.F. Mason, R.D. Peacock, B. Stewart, Mol. Phys. 30, 1829–1841 (1975)CrossRefGoogle Scholar
- 36.T. Nakagawa, Y. Hasegawa, T. Kawai, J. Phys. Chem. A 112, 5096–5103 (2008)CrossRefGoogle Scholar
- 37.Y. Hasegawa, N. Sato, Y. Hirai, T. Nakanishi, Y. Kitagawa, A. Kobayashi, M. Kato, T. Seki, H. Ito, K. Fushimi, J. Phys. Chem. A 119, 4825–4833 (2015)CrossRefGoogle Scholar
Copyright information
© Springer Nature Singapore Pte Ltd. 2018