Skip to main content

Hybrid Quantum-Behaved Particle Swarm Optimization for Mobile-Edge Computation Offloading in Internet of Things

  • Conference paper
  • First Online:
Mobile Ad-hoc and Sensor Networks (MSN 2017)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 747))

Included in the following conference series:

Abstract

Mobile edge computing (MEC) is a technology that transfers resource to the edge of network, which spares more attention to giving users easier access to network and computation resources. Due to the large amount of data computation needed for devices in Internet of Things, MEC technology is applied to improve computing efficiency. Though MEC can be applied to the Internet of Things, it needs further consideration on how to efficiently and reasonably allocate computing resources, and how to minimize the computing time of all users. This paper proposes a computing resources allocation scheme based on hybrid quantum-behaved particle swarm optimization. Simulation experiments with the network environment based on the Internet of Things is carried out. The results show that this algorithm can accelerate the whole computing process and reduce the number of iterations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cremer, D., Bang, N., Simkin, L.: The integrity challenge of the Internet-of-Things (IoT): on understanding its dark side. J. Mark. Manage. 33(1–2), 145–158 (2017)

    Article  Google Scholar 

  2. Bonomi, F., Milito, R., Natarajan, P., Zhu, J.: Fog computing: a platform for internet of things and analytics. In: Bessis, N., Dobre, C. (eds.) Big Data and Internet of Things: A Roadmap for Smart Environments. SCI, vol. 546, pp. 169–186. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-05029-4_7

    Chapter  Google Scholar 

  3. Yannuzzi, M., Milito, R., Serral-Gracià, R., et al.: Key ingredients in an IoT recipe: fog computing, cloud computing, and more fog computing. In: 2014 IEEE 19th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD), pp. 325–329. IEEE (2014)

    Google Scholar 

  4. Hong, K., Lillethun, D., Ramachandran, U., et al.: Mobile fog: a programming model for large-scale applications on the internet of things. In: Proceedings of the Second ACM SIGCOMM Workshop on Mobile Cloud Computing, pp. 15–20. ACM (2013)

    Google Scholar 

  5. Lopez, P.G., Montresor, A., Epema, D., et al.: Edge-centric computing: vision and challenges. ACM SIGCOMM Comput. Commun. Rev. 45(5), 37–42 (2015)

    Article  Google Scholar 

  6. Korpela, E., Werthimer, E., Anderson, D., et al.: SETI@HOME—massively distributed computing for SETI. Comput. Sci. Eng. 3(1), 78–83 (2001)

    Article  Google Scholar 

  7. Beberg, A.L., Ensign, D.L., Jayachandran, G., et al.: Folding@home: lessons from eight years of volunteer distributed computing. In: IEEE International Symposium on Parallel & Distributed Processing, IPDPS 2009, pp. 1–8. IEEE (2009)

    Google Scholar 

  8. Islam, S., Grégoire, J.C.: Giving users an edge: a flexible cloud model and its application for multimedia. Future Gener. Comput. Syst. 28(6), 823–832 (2012)

    Article  Google Scholar 

  9. Chandra, A., Weissman, J., Heintz, B.: Decentralized edge clouds. IEEE Internet Comput. 17(5), 70–73 (2013)

    Article  Google Scholar 

  10. Yao, X., Han, X., Du, X., Zhou, X.: A lightweight multicast authentication mechanism for small scale IoT applications. IEEE Sens. J. 13(10), 3693–3701 (2013)

    Article  Google Scholar 

  11. Du, X., Wu, D., Liu, W., Fang, Y.: Multi-class routing and medium access control for heterogeneous mobile ad hoc networks. IEEE Trans. Veh. Technol. 55(1), 278–285 (2006)

    Article  Google Scholar 

  12. Hei, X., Du, X.: Biometric-based two-level secure access control for implantable medical devices during emergency. In: Proceedings of IEEE INFOCOM 2011, Shanghai, China, April 2011

    Google Scholar 

  13. Du, X., Xiao, Y., Chen, H.H., Wu, Q.: Secure cell relay routing protocol for sensor networks. Wirel. Commun. Mobile Comput. 6(3), 375–391 (2006)

    Article  Google Scholar 

  14. Xiao, Y., Rayi, V., Sun, B., Du, X., Hu, F., Galloway, M.: A survey of key management schemes in wireless sensor networks. J. Comput. Commun. 30(11–12), 2314–2341 (2007)

    Article  Google Scholar 

  15. Du, X., Xiao, Y., Guizani, M., Chen, H.H.: An effective key management scheme for heterogeneous sensor networks. Ad Hoc Netw. 5(1), 24–34 (2007)

    Article  Google Scholar 

  16. Hei, X., Du, X., Wu, J., Hu, F.: Defending resource depletion attacks on implantable medical devices. In: Proceedings of IEEE GLOBECOM 2010, Miami, Florida, USA, December 2010

    Google Scholar 

  17. Du, X., Guizani, M., Xiao, Y., Chen, H.H.: A routing-driven elliptic curve cryptography based key management scheme for heterogeneous sensor networks. IEEE Trans. Wireless Commun. 8(3), 1223–1229 (2009)

    Article  Google Scholar 

  18. Xiao, Y., Du, X., Zhang, J., Guizani, S.: Internet protocol television (IPTV): the killer application for the next generation internet. IEEE Commun. Mag. 45(11), 126–134 (2007)

    Article  Google Scholar 

  19. Du, X., Chen, H.H.: Security in wireless sensor networks. IEEE Wirel. Commun. Mag. 15(4), 60–66 (2008)

    Article  Google Scholar 

  20. Du, X., Guizani, M., Xiao, Y., Chen, H.H.: Secure and efficient time synchronization in heterogeneous sensor networks. IEEE Trans. Veh. Technol. 57(4), 2387–2394 (2008)

    Article  Google Scholar 

  21. Munoz, O., Pascual-Iserte, A., Vidal, J.: Optimization of radio and computational resources for energy efficiency in latency-constrained application offloading. IEEE Trans. Veh. Technol. 64(10), 4738–4755 (2015)

    Article  Google Scholar 

  22. Liu, Y., Tan, X., et al.: Research on spectrum allocation algorithms based on game theory in cognitive radio networks, Harbin Institute of Technology

    Google Scholar 

  23. TR25 G. 996, 3GPP SCM channel models, 3GPP TR25.996, vol. v6.1 (2003)

    Google Scholar 

Download references

Acknowledgment

The work presented in this paper was partially supported by the 2015 National Natural Science Foundation of China (Grant number 61401381).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhibin Gao or Xiaojiang Du .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dai, S., Liwang, M., Liu, Y., Gao, Z., Huang, L., Du, X. (2018). Hybrid Quantum-Behaved Particle Swarm Optimization for Mobile-Edge Computation Offloading in Internet of Things. In: Zhu, L., Zhong, S. (eds) Mobile Ad-hoc and Sensor Networks. MSN 2017. Communications in Computer and Information Science, vol 747. Springer, Singapore. https://doi.org/10.1007/978-981-10-8890-2_26

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-8890-2_26

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-8889-6

  • Online ISBN: 978-981-10-8890-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics