Understanding Trajectory Data Based on Heterogeneous Information Network Using Visual Analytics

  • Rui Zhang
  • Wenjie Ma
  • Luo Zhong
  • Peng Xie
  • Hongbo Jiang
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 747)


With its continuous development, location information acquisition technology is able to collect more and more trajectory data, and the rich information contained therein is gradually attracting attention from researchers. Trajectory data involves complex relationships among moving objects, time, space, which are hard to understand and be used directly. Nowadays, visual analysis of trajectory data is mainly focus on its representation and interaction, but fails to address the complex correlation contained in trajectory data. Hence, we propose TrajHIN, a heterogeneous information network model built on trajectory data, measure the meta path-based similarity and centrality, and use a visual analytics method to deeply understand trajectory data. The example of visual analysis of real trajectory data has been interpreted and given feedback from domain experts, which proves effectiveness of TrajHIN and feasibility of mining implicit semantic information from trajectory data.


Trajectory Heterogeneous information network Visual analysis 



This work was supported in part by the National Natural Science Foundation of China under Grants 61572219, 61502192, 61671216, 61471408 and 51479157; by the China Postdoctoral Science Foundation under Grants 2017T100556; and by the Fundamental Research Funds for the Central Universities under Grant 2015QN073, 2016YXMS297, 2016JCTD118 and WUT:2016III028; by fund of Hubei Key Laboratory of Inland Shipping Technology under Grant NHHY2015005.


  1. 1.
    Sun, Y., Han, J.: Mining heterogeneous information networks: a structural analysis approach. ACM SIGKDD Explor. Newsl. 14(2), 20–28 (2013)CrossRefGoogle Scholar
  2. 2.
    Deng, H., Han, J., Lyu, M. R., King, I.: Modeling and exploiting heterogeneous bibliographic networks for expertise ranking. In: Proceedings of the 12th ACM/IEEE-CS joint conference on Digital Libraries, pp. 71–80. ACM, June 2012Google Scholar
  3. 3.
    Madokoro, H., Honma, K., Sato, K.: Classification of behavior patterns with trajectory analysis used for event site. In: International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE, June 2012Google Scholar
  4. 4.
    Kalayeh, M.M., Mussmann, S., Petrakova, A., Lobo, N.D.V., Shah, M.: Understanding Trajectory Behavior: A Motion Pattern Approach (2015). arXiv preprint arXiv:1501.00614
  5. 5.
    Bucher, D., Jonietz, D., Raubal, M.: A heuristic for multi-modal route planning. In: Gartner, G., Huang, H. (eds.) Progress in Location-Based Services 2016. LNGC, pp. 211–229. Springer, Cham (2017). Scholar
  6. 6.
    Luo, W., Tan, H., Chen, L., Ni, L.M.: Finding time period-based most frequent path in big trajectory data. In: Proceedings of the 2013 ACM SIGMOD international conference on management of data, pp. 713–724. ACM, June 2013Google Scholar
  7. 7.
    Su, H., Zheng, K., Huang, J., Jeung, H., Chen, L., Zhou, X.: Crowdplanner: a crowd-based route recommendation system. In: IEEE 30th International Conference on Data Engineering (ICDE),  pp. 1144–1155. IEEE, March 2014Google Scholar
  8. 8.
    Xue, A.Y., Zhang, R., Zheng, Y., Xie, X., Huang, J., Xu, Z.: Destination prediction by sub-trajectory synthesis and privacy protection against such prediction. In: IEEE 29th International Conference on  Data Engineering (ICDE 2013), pp. 254–265. IEEE, April 2013Google Scholar
  9. 9.
    Liu, D., Weng, D., Li, Y., Bao, J., Zheng, Y., Qu, H., Wu, Y.: SmartAdP: visual analytics of large-scale taxi trajectories for selecting billboard locations. IEEE Trans. Visual Comput. Graphics 23(1), 1–10 (2017)CrossRefGoogle Scholar
  10. 10.
    Huang, X., Zhao, Y., Ma, C., Yang, J., Ye, X., Zhang, C.: TrajGraph: a graph-based visual analytics approach to studying urban network centralities using taxi trajectory data. IEEE Trans. Visual Comput. Graphics 22(1), 160–169 (2016)CrossRefGoogle Scholar
  11. 11.
    Shang, J., Qu, M., Liu, J., Kaplan, L.M., Han, J., Peng, J.: Meta-Path Guided Embedding for Similarity Search in Large-Scale Heterogeneous Information Networks (2016). arXiv preprint arXiv:1610.09769
  12. 12.
    Yu, X., Sun, Y., Norick, B., Mao, T., Han, J.: User guided entity similarity search using meta-path selection in heterogeneous information networks. In: Proceedings of the 21st ACM International Conference on Information and Knowledge Management,  pp. 2025–2029. ACM, October 2012Google Scholar
  13. 13.
    Gupta, M., Aggarwal, C., Han, J., Sun, Y.: Evolutionary Clustering and Analysis of Heterogeneous Information Networks. IBM Research Report, 1006-064 (2010)Google Scholar
  14. 14.
    Zhang, J., Yu, P.S., Zhou, Z.H.: Meta-path based multi-network collective link prediction. In: Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 1286–1295. ACM, August 2014Google Scholar
  15. 15.
    Kong, X., Zhang, J., Yu, P.S.: Inferring anchor links across multiple heterogeneous social networks. In: Proceedings of the 22nd ACM international conference on Information & Knowledge Management, pp. 179–188. ACM, October 2013Google Scholar
  16. 16.
    Zhang, J., Kong, X., Yu, P.S.: Transferring heterogeneous links across location-based social networks. In: Proceedings of the 7th ACM international conference on Web search and data mining, pp. 303–312. ACM, February 2014Google Scholar
  17. 17.
    Pienta, R., Lin, Z., Kahng, M., Vreeken, J., Talukdar, P.P., Abello, J., Chau, D.H.: Seeing the Forest through the Trees: Adaptive Local Exploration of Large Graphs (2015). arXiv preprint arXiv:1505.06792
  18. 18.
    Kahng, M., Andrews, P.Y., Kalro, A., Chau, D.H.P.: ActiVis: visual exploration of industry-scale deep neural network models. IEEE Trans. Visual Comput. Graphics 24(1), 88–97 (2018)CrossRefGoogle Scholar
  19. 19.
    Pienta, R., Hohman, F., Endert, A., Tamersoy, A., Roundy, K., Gates, C., Chau, D.H.: VIGOR: Interactive Visual Exploration of Graph Query Results. IEEE Trans. Visual. 24(1), 215–225 (2018)CrossRefGoogle Scholar
  20. 20.
    Al-Dohuki, S., Wu, Y., Kamw, F., Yang, J., Li, X., Zhao, Y., Wang, F.: SemanticTraj: A new approach to interacting with massive taxi trajectories. IEEE Trans. Visual. Comput. Graphics 23(1), 11–20 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Rui Zhang
    • 1
    • 2
    • 3
  • Wenjie Ma
    • 3
  • Luo Zhong
    • 3
  • Peng Xie
    • 3
  • Hongbo Jiang
    • 4
  1. 1.Hubei Key Laboratory of Transportation Internet of ThingsWuhan University of TechnologyWuhanChina
  2. 2.Hubei Key Laboratory of Inland Shipping TechnologyWuhan University of TechnologyWuhanChina
  3. 3.School of Computer Science and TechnologyWuhan University of TechnologyWuhanChina
  4. 4.School of Electronic Information and CommunicationsHuazhong University of Science and TechnologyWuhanChina

Personalised recommendations