Soil Information as a Reforestation Decision-Making Tool and Its Implication for Forest Management in the Philippines

  • I. A. Navarrete
  • D. P. Peque
  • M. D. Macabuhay
Part of the Asia in Transition book series (AT, volume 7)


Over the last 2 decades, the Philippine government has devoted a considerable amount of resources to the rehabilitation and reforestation of degraded forest land. However, deforestation and forest degradation have continued to be a major environmental problem in the Philippines as vast forest cover is lost annually. While large-scale reforestation projects have been initiated, most have been far from successful. This chapter argues that soil is the single most important factor affecting survival, growth, and development of trees and thus, influence the success of reforestation programs. Within the context of the Philippines, it analyzes soil factors that limits the success of reforestation projects and discusses the use of exotic and native tree species in reforestation. Finally, it presents current research and development efforts to reforest degraded forest land, particularly the National Greening Program, and the role of the reforestation program on soil carbon sequestration.


Carbon sequestration Degraded soil Exotic species Reforestation Site quality 



The University Research Council of Ateneo de Manila University has granted a research faculty fellowship to Ian A. Navarrete during this preparation of the manuscript.


  1. Alcala, A. C. (1997). Keynote address. In Proceedings of international conference on reforestation with Philippine species. ViSCA-GTZ Ecology Project, Baybay, Leyte, Philippines.Google Scholar
  2. Asio, V. B. (1996). Characteristics, weathering, formation and degradation of soils from volcanic rocks in Leyte, Philippines. Hohenheimer Bodenkundliche Hefte Vol. 33 (p. 209). Stuttgart.Google Scholar
  3. Asio, V. B. (1997). A review of upland agriculture, population pressure, and environmental degradation in the Philippines. Annals of Tropical Research, 19, 1–18.Google Scholar
  4. Asio, V. B., & Milan, P. P. (2002). Improvement of soil quality in degraded lands through rainforestation farming. Paper presented during the International Symposium on Sustaining Food Security and Managing Natural Resources in Southeast Asia, January 8–11, 2002, Chiang Mai, Thailand.Google Scholar
  5. Asio, V. B., & Tulin, A. B. (1997). The characteristics of degraded soils and the ameliorative effect of vegetation. Paper presented during the International Conference on Reforestation (p. 15). March 3–6, 1997, Tacloban City, Leyte.Google Scholar
  6. Asio, V. B., Jahn, R., Stahr, K., & Margraf, J. (1998). Soils of the tropical forest of Leyte. 2. Impact of different land uses on the status of organic matter and nutrient availability. In A. Schulte & D. Ruhiyat (Eds.), Soils of tropical forest ecosystems (pp. 38–44). Springer-Verlag: Berlin.Google Scholar
  7. Asio, V. B., Cabunos, C. C., & Chen, Z. C. (2006). Morphology, physicochemical characteristics, and fertility of soils from Quaternary limestone in Leyte, Philippines. Soil Science, 171, 648–661.CrossRefGoogle Scholar
  8. Asio, V. B., Jahn, R., Perez, F. O., Navarrete, I. A., & Abit, S. M., Jr. (2009). A review of soil degradation in the Philippines. Annals of Tropical Research, 31, 69–94.Google Scholar
  9. Baillie, I. C. (1996). Soils of the humid tropics. In P. W. Richards (Ed.), The tropical rainforest (pp. 256–283). Cambridge: Cambridge University Press.Google Scholar
  10. Balangue, T. O. (2015). National Greening Program assessment project: environmental component-process evaluation phase. Philippine Institute for Development Studies.Google Scholar
  11. Balzer, P. (1998). Dipterocarpus validus, a native reforestation species. In F. Goltenboth, P. P. Milan & V. B. Asio (Eds.), Proceeding of the International conference on applied tropical ecology: aspects on ecosystems management in tropical Asia. September 8–10, 1998, VISCA, Baybay, Leyte, Philippines.Google Scholar
  12. Bankoff, G. (2007). One island too many: Reappraising the extent of deforestation in the Philippines prior to 1946. Journal of Historical Geography, 33, 314–334.CrossRefGoogle Scholar
  13. Barrera, A., Aristorenas, I., & Tingzon, J. (1954). Soil survey of Leyte province, Philippines (p. 103). Manila: Department of Agriculture and Natural Resources (DANR).Google Scholar
  14. Blum, W. E. H. (1998). Basic concepts: Degradation, resilience, and rehabilitation. In R. InLal & W. E. H. Blum (Eds.), Methods for Assessment of Soil Degradation, Advances in Soil Science (pp. 1–16). Boca Raton: CRC Press.Google Scholar
  15. Bruijnzeel, L. A. (1998). Soil chemical changes after tropical forest disturbance and conversion: The hydrological perspective. In A. Schulte & D. Ruhiyat (Eds.), Soils of Tropical Forest Ecosystems (pp. 46–61). Berlin: Springer-Verlag.Google Scholar
  16. Calubaquib, M. A. M., Navarrete, I. N., & Sanchez, P. B. (2016). Properties and nutrient status of degraded soils in Luzon, Philippines. Philippine Journal of Science, 145, 249–258Google Scholar
  17. Camarsa, G., Silva, J., Toland, J., Hudson, T., Nottingham, S., Rosskopf, N., et al. (2014). LIFE and soil protection (p. 66). Luxembourg: Publications Office of the European Union.Google Scholar
  18. Cramb, R. A., Garcia, J. N., Gerrits, R. V., & Saguiguit, G. C. (2000). Conservation farming projects in the Philippine uplands: Rhetoric and reality. World Development, 28, 911–927.CrossRefGoogle Scholar
  19. Cruz, M. C. (1984). Population pressure, migration and markets: Implications for upland developmend. In Proceeding of the workshop on policies for forest resources management. February 17–18, 1984, Club Solviento, Los Baños, Laguna.Google Scholar
  20. Dart, P. J., Brown, S. M., Simpson, J. A., Harrison, S. R., & Venn T. J. (2001). Experience from ACIAR trials of the suitability and performance of Australian trees species. In S. Harrison & J. Herbohn (Eds.) Socio-economic evaluation of the potential for Australian tree species in the Philippines (p. 192 ). Canberra. ACIAR, Monograph 75. VIII.Google Scholar
  21. Elliot, S., Blakesley, D., & Hardwick, K. (2013). Restoring tropical forests: A practical guide (p. 344). Richmond: Royal Botanic Gardan, Kew. Google Scholar
  22. Eswaran, H., Kimble, J., Cook, T., & Beinroth, F.H. (1992). Soil diversity in the tropics: Implications for agricultural development. In R. Lal & P.A. Sanchez (Eds.), Myths and science of soils of the tropics (pp. 1–16). SSSA Special Publication No. 29.Google Scholar
  23. FAO. (1976). A framework for land evaluation: Rome, Food and Agricultural Organization (FAO) of the United Nations, Soils Bulletin, 32, Rome, 72.Google Scholar
  24. Forest Management Bureau (FMB). (2003). Sustainable forest management, poverty alleviation and food security in upland communities in the Philippines.Google Scholar
  25. FMB. (2012). Philippine forestry statistics. Forest Management Bureau, Department of Environment and Natural Resources, Quezon City, Philippines.Google Scholar
  26. FMB. (1988). Natural forest resources of the Philippines. Manila: Philippine-German Forest Resources Inventory Project.Google Scholar
  27. Garrity, D. P., Kummer, D. M., & Guiang, E. S. (1993). The Philippines. In Sustainable agriculture and the environment in the humid tropics (pp. 549–624). Washington DC, National Academy Press.Google Scholar
  28. Göltenboth, F., & Milan, P. P. (2015). Biological sinks for carbon dioxide-an option for agroforestry systems in the tropics. Ann Trop Res, 37, 129–141.Google Scholar
  29. Harrison, S., Herbohn, J. (2000). Socio-economic evaluation of the potential for Australian tree species in the Philippines (p. 192). Canberra. ACIAR Monograph 75.Google Scholar
  30. Heemsbergen, D. A., Berg, M. P., Loreau, M., Van Hal, J. R., Faber, J. H., & Verhoef, H. A. (2004). Biodiversity effects on soil processes explained by interspecific functional dissimilarity. Science, 306, 1019–1020.CrossRefGoogle Scholar
  31. Israel, D. C. & Lintag, J. H. (2013). Assessment of the efficiency and effectiveness of the reforestation program of the Department of Environment and Natural Resources. Philippine Institute for Development Studies.Google Scholar
  32. Israel, D. C. & Arbo, M. D. G. (2015). The National Greening Program: hope for our balding forests. Philippine Institute for Development Studies.Google Scholar
  33. Jahn, R., & Asio, V. B. (1998). Soils of the tropical forests of Leyte, Philippines. I. Weathering, soil characteristics, classification and site qualities. In A. Schulte & D. Ruhiyat (Eds.). Soils of the tropical forest ecosystems (pp. 29–36). Berlin: Springer-Verlag.CrossRefGoogle Scholar
  34. Kamprath, E. (1980). Soil acidity in well-drained soils of the tropics as a constraint to food production. Priorities for Alleviating Soil-Related Constraints to Food Production in the Tropics (pp. 171–187). Los Banos: IRRI.Google Scholar
  35. Kauffman, S., Sombroek, W. G., & Mantel, S. (1998). Soils of rainforest: Characterization and major constraints of dominant forest soils in the humid tropics. In A. Schulte & D. Ruhiyat (Eds.), Soils of the Tropical Forest Ecosystems (pp. 9–20). Berlin: Springer- Verlag.CrossRefGoogle Scholar
  36. Korning, J., Thomsen, K., Dalisgaard, & Normber, P. (1994). Characteristics of three Udults and their relevance to the composition and structure of virgin forest of Amazonian Ecuador. Geoderma, 63, 145–164.Google Scholar
  37. Kubota, D., Masunaga, T., Hermansah, A., Rasyidin, A., Hotta, M., Shinmura, Y., et al. (1998). Soil environment and tree species diversity in tropical rain forest, West Sumatra, Indonesia. In A. Schulte & D. Ruhiyat (Eds.), Soils of the tropical forest ecosystems (pp. 159–167). Berlin: Springer- Verlag.CrossRefGoogle Scholar
  38. Kummer, D. M. (1995). The political use of Philippine forestry statistics in the postwar period. Crime, Law & Social Change, 22, 163–180.CrossRefGoogle Scholar
  39. Langenberger, G. (2000). Forest vegetation studies on the foothills of Mt. Pangasugan, Leyte, Philippines. TOB Publication F-11/10e Tropenokelogisches Begleitprogram, GTZ, Eschborn, Germany.Google Scholar
  40. Langenberger, G. (2006). Habitat distribution of dipterocarp species in the Leyte Cordillera: An indicator for species-site suitability in local reforestation programs. Annals of Forest Science, 63, 149–156.CrossRefGoogle Scholar
  41. Langenberger, G., Martin, K., & Sauerborn, J. (2006). Vascular plant species inventory of a Philippine lowland rain forest and its conservation value. Biodiversity and Conservation, 15, 1271–1301.CrossRefGoogle Scholar
  42. Lasco, R. D., & Pulhin, J. (1999). Forest land-use change in the Philippines and climate change mitigation. Mitigation and Adaption to Climate Change Journal, 5, 81–97.CrossRefGoogle Scholar
  43. Liu, D. S., Iverson, L. R., & Brown, S. (1993). Rates and patterns of deforestation in the Philippines: Application to geographic information system analysis. Forest Ecology Management, 57, 1–16.CrossRefGoogle Scholar
  44. Margraf, J., & Milan, P. P. (1996). Ecology of dipterocarp forests and its relevance for island rehabilitation in Leyte, Philippines. In A. Schulte & D. Schoene (Eds.), Dipterocarp forest ecosystems (pp. 124–154). Singapore: World Scientific.CrossRefGoogle Scholar
  45. Markewitz, D., Davidson, E., Moutinho, P., & Nepstad, D. (2004). Nutrient loss and redistribution after forest clearing on a highly weathered soil in Amazonia. Ecological Applications, 14, 177–199.CrossRefGoogle Scholar
  46. Masunaga, T., Kubota, D., Hotta, M., Shinmura, Y., & Wakatsuki, T. (1998). Distribution characteristics of mineral elements in trees of tropical rain forest, West Sumatra, Indonesia. In A. Schulte & D. Ruhiyat (Eds.), Soils of the Tropical Forest Ecosystems (pp. 168–174). Berlin: Springer- Verlag.CrossRefGoogle Scholar
  47. Müller-Edzards, C. (1996). Development of sustainable and ecologically sound agroforestry systems in Leyte, Philippines (p. 38). TOB Publication F-11/10e Tropenokelogisches Begleitprogram, GTZ, Eschborn, Germany.Google Scholar
  48. Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B., & Kent, J. (2000). Biodiversity hotspots for conservation priorities. Nature, 403, 853–858.CrossRefGoogle Scholar
  49. Navarrete, I. A., & Asio, V. B. (2014). Research productivity in soil science in the Philippines. Scientometrics, 100, 261–272.CrossRefGoogle Scholar
  50. Navarrete, I. A., & Tsutsuki, K. (2008). Land-use impact on soil carbon, nitrogen, neutral sugar composition and related chemical properties in a degraded Ultisol in Leyte, Philippines. Soil Science and Plant Nutrition, 54, 321–331.Google Scholar
  51. Navarrete, I. A., Tsutsuki, K., & Asio, V. B. (2013). Characteristics and fertility constraints of some degraded soils in Leyte, Philippines. Archives of Agronomy and Soil Science, 59, 625–639.CrossRefGoogle Scholar
  52. Navarrete, I. A., Asio, V. B., Jahn, R., & Tsutsuki, K. (2007). Characteristics and genesis of two highly weathered soils in Samar, Philippines. Australian Journal of Soil Research, 45, 153–163.CrossRefGoogle Scholar
  53. Navarrete, I. A., Tsutsuki, K., Asio, V. B., Jahn, R., & Kondo, R. (2009). Characteristics and formation of rain forest soils derived from late Quaternary basaltic rocks in Leyte, Philippines. Environmental Geology, 58, 1257–1268.CrossRefGoogle Scholar
  54. Navarrete, I. A., Tsutsuki, K., Asio, V. B., Masayuki, T., & Sueta, J. (2011). Chemical, mineralogical and morphological characteristics of a late Quaternary sedimentary-rock derived soils in Leyte, Philippines. Soil Science, 176, 699–708.Google Scholar
  55. Nussbaum, R., & Hoe, A. L. (1996). Rehabilitation of degraded sites in logged over forest using Dipterocarps. In A. Shulte & D. Schone (Eds.), Dipterocarp forest ecosystems, towards sustainable management (pp. 446–463). Singapore: World Scientific.Google Scholar
  56. Ohta, S., & Effendi, S. (1992). Utisols of the lowland dipterocarp forest in East Kalimantan, Indonesia, II. Status of carbon, nitrogen and phosphorous. Soil Science and Plant Nutrition, 38, 207–216.CrossRefGoogle Scholar
  57. Otsuka, H., Briones, A. A., Daquiado, N. P., & Evangelio, F. A. (1988). Characteristics and genesis of volcanic ash soils in the Philippines. Technical Bulletin. Tropical Agriculture Research Center: Japan.Google Scholar
  58. Pulhin, J. M., et al. (2006). Historical overview. In Chokkalingam U, Carandang AP, Pulhin JM, Lasco RD, Peras RJJ, Toma T (Eds.), One century of forest rehabilitation in the Philippines: approaches, outcomes and lessons. Bogor, Indonesia: Center for International Forestry Research (CIFOR).Google Scholar
  59. Rebugio, L., Pulhin, J., Carandang, P., Peralta, E., Camacho, L. & Bantayan, N. (2007). Forest restoration and rehabilitation in the Philippines. Retrieved October 8, 2014 from
  60. Richter, D. D., & Babbar, L. I. (1991). Soil diversity in the tropics. Advances in Ecological Research, 21, 315–389.CrossRefGoogle Scholar
  61. Roth, D. M. (1983). Philippine forests and forestry: 1565–1920. In R. P. Tucker and J. F. Richards (Eds.), Global deforestation and the nineteenth century world economy (pp. 30–49). Durham, N.C: Duke Press Policy Studies, Duke University Press.Google Scholar
  62. Sanchez, P. A. (1976). Properties and Management of Soils in the Tropics (p. 618). New York: John Wiley & Sons.Google Scholar
  63. Sanchez, P. A., & Logan, T. G. (1992). Myths and science about the chemistry and fertility of soils in the tropics. In Myths and Science of Soils of the Tropics (pp. 35–46). SSSA Special Publication No. 29, Madison, Wisconsin.Google Scholar
  64. Schlichting, E., Blume, H. P., & Stahr, K. (1995). Bodenkundliches practicum [Soil Science Training] (2nd ed.) (p. 295). Berlin: Blackwell.Google Scholar
  65. Schneider, T., Ashton, M. S., Montagnini, F., & Milan, P. P. (2014). Growth performance of sixty tree species in smallholder reforestation trials on Leyte, Philippines. New Forests, 45, 83–96.CrossRefGoogle Scholar
  66. Schulte, A., & Ruhiyat, D. (1996). Soils of tropical forest ecosystems (p. 206). Berlin: Springer-Verlag.Google Scholar
  67. Simon, J. D., Natividad, N. M., Amaba, R. M., & Demen, T. P. (1975). Soil survey of Samar provinces, Philippines. Manila: Bureau of Print.Google Scholar
  68. Schroeder, P. (1995). Organic matter cycling by tropical agroforestry systems: A review. Journal of Tropical Forest Science, 7, 462–474.Google Scholar
  69. Schulz, J. P. (1960). Ecological studies on rainforest in Northern Suriname (p. 267). Uitgeveers Maatschappij, Amsterdam: North Holland.Google Scholar
  70. Uehara, G. (1978). Mineralogy of the predominant soils in tropical and sub-tropical regions. In C. S. Andrew & E. J. Kamprath (Eds.), Mineral nutrition of legume in tropical and subtropical soils. CSIRO: Melbourne.Google Scholar
  71. Van Raij, B., & Peech, M. (1976). Electro chemical properties of some Oxisols and Alfisols of the tropics. Soil Science Society of America, Proceedings, 36, 587–593.CrossRefGoogle Scholar
  72. Villavicencio, V. (1987). Philippines. In C. Lin Sien (Ed.). Environmental management in Southeast Asia (p. 77–107). Faculty of Science. National University of Singapore.Google Scholar
  73. Wernstedt, W. H., & Spencer, J. E. (1967). The Philippine island world: A physical, cultural and regional geography. Berkely, LA: University of California Press.Google Scholar
  74. Whitmore, T. C. (1998). An introduction to tropical rainforests (p. 282). Oxford: Oxford University Press.Google Scholar
  75. World Bank. (2016). The cost of fire: an economic analysis of Indonesia’s 2015 fire crisis (p. 10). Jakarta: World Bank Group.Google Scholar
  76. Zech, W., & Drechsel, P. (1998). Nutrient disorder and nutrient management in fast growing plantations. In A. Schulte & D. Ruhiyat (Eds.), Soils of Tropical Forest Ecosystems (pp. 99–106). Berlin: Springer-Verlag.CrossRefGoogle Scholar
  77. Zikeli, S., Asio, V. B., & Jahn, R. (2000). Nutrient status of soil in the rain forest of Mt. Pangasugan, Leyte, Philippines. Annals of Tropical Research, 22, 78–88.Google Scholar
  78. Zimmermann, M. H., & Brown, C. L. (1971). Trees structure and function (p. 336). New York: Springer-Verlag.Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of Environmental ScienceAteneo de Manila UniversityQuezon CityPhilippines
  2. 2.Department of Forest ScienceVisayas State UniversityBaybayPhilippines

Personalised recommendations