Skip to main content

Introduction

  • Chapter
  • First Online:
  • 741 Accesses

Part of the book series: Power Systems ((POWSYS))

Abstract

This chapter presents a summary and overview of the major power quality issues (low power factor, harmonic pollution and unbalanced problem) by taking the power quality measurement data in Macau and China as examples. And, the potential market for reactive power and harmonic compensation in China is investigated. In order to solve the above major power quality issues, the historical review of different power quality compensator topologies and control methods are provided. Finally, the organization of this book is introduced at the end of this chapter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. S.S. Williamson, A.K. Rathore, F. Musavi, Industrial electronics for electric transportation: current state-of-the-art and future challenges. IEEE Trans. Ind. Electron. 62(5), 3021–3032 (2015)

    Article  Google Scholar 

  2. A. Javadi, K. Al-Haddad, A single-phase active device for power quality improvement of electrified transportation. IEEE Trans. Ind. Electron. 62(5), 3033–3041 (2015)

    Article  Google Scholar 

  3. S.M. Mousavi, A. Tabakhpour, E. Fuchs, K. Al-Haddad, Power quality issues in railway electrification: a comprehensive perspective. IEEE Trans. Ind. Electron. 62(5), 3081–3090 (2015)

    Article  Google Scholar 

  4. P. Salmeron, S.-P. Litran, Improvement of the electric power quality using series active and shunt passive filters. IEEE Trans. Power Deliv. 25, 1058–1067 (2010)

    Article  Google Scholar 

  5. IEEE Recommended Practices and Requirements for Harmonic Control in Electrical Power Systems, 2014, IEEE Standard 519-2014

    Google Scholar 

  6. IEEE Recommended Practice on Monitoring Electric Power Quality, 1995, IEEE Standard 1159:1995

    Google Scholar 

  7. S.-U. Tai, M.-C. Wong, M.-C. Wong, Y.-D. Han, Some findings on harmonic measurement in Macao, in Proceedings of 7th International Conference on Power Electronics and Drive Systems, PEDS 07 (2007), pp. 405–410

    Google Scholar 

  8. S.-U. Tai, Power quality study in Macau and virtual power analyzer, in Master Book (University of Macau, 2012)

    Google Scholar 

  9. Annual Reports, The Electricity Company in Macau (www.cem-macau.com)

  10. B. Singh, K. Al-Haddad, A. Chandra, A review of active filters for power quality improvement. IEEE Trans. Ind. Electron. 46(5), 960–971 (1999)

    Article  Google Scholar 

  11. National Bureau of Statistics of the People’s Republic of China (Dec 2013) [Online]. Available: http://www.stats.gov.cn/

  12. Annual Report of Rongxin Power Electronic Co., Ltd. Dec 2013

    Google Scholar 

  13. H. Rudnick, J. Dixon, L. Moran, Delivering clean and pure power. IEEE Power Energy Mag. 1(5), 32–40 (2003)

    Article  Google Scholar 

  14. J.C. Das, Passive filters - potentialities and limitations. IEEE Trans. Ind. Appl. 40(1), 232–241 (2004)

    Article  Google Scholar 

  15. V. Trujillo, C.R. Fuerte-Esquivel, J.H. Tovar Hernandez, Advanced three-phase static VAr compensator models for power flow analysis. IEE Proc. Gener. Transm. Distrib. 150(1), 119–126 (2003)

    Article  Google Scholar 

  16. T. Baldwin, T. Hogans, S. Henry, F. Renovich, P. Latkovic, Reactive power compensation for voltage control at resistance welders. IEEE Trans. Ind. Appl. 41(6), 1485–1492 (2005)

    Article  Google Scholar 

  17. Y.C. Chang, Multi-objective optimal SVC installation for power system loading margin improvement. IEEE Trans. Power Syst. 27(2), 984–992 (2012)

    Article  Google Scholar 

  18. H. Ambriz-Perez, E. Acha, C.R. Fuerte-Esquivel, Advanced svc models for Newton-Raphson load flow and Newton optimal power flow studies. IEEE Trans. Power Syst. 15(1), 129–136 (2000)

    Article  Google Scholar 

  19. J.E.R. Alves, L.A.S. Pilotto, E.H. Watanabe, Thyristor-controlled reactors nonlinear and linear dynamic analytical models. IEEE Trans. Power Deliv. 23(1), 338–346 (2008)

    Article  Google Scholar 

  20. N. Daratha, B. Das, J. Sharma, Coordination between OLTC and SVC for voltage regulation in unbalanced distribution system distributed generation. IEEE Trans. Power Syst. 29(1), 289–299 (2014)

    Article  Google Scholar 

  21. F.R. Quintela, J.M.G. Arevalo, R.C. Redondo, Power analysis of static VAr compensators. Int. J. Electr. Power 30, 376–382 (2008)

    Article  Google Scholar 

  22. F.R. Quintela, J.M.G. Arevalo, R.C. Redondo, Single-phase power supply to balanced three-phase loads through SVAr compensators. Int. J. Electr. Power 33, 715–720 (2011)

    Article  Google Scholar 

  23. F.Z. Peng, H. Akagi, A. Nabae, A new approach to harmonic compensation in power systems-a combined system of shunt passive and series active filters. IEEE Trans. Ind. Appl. 26, 983–990 (1990)

    Article  Google Scholar 

  24. H. Hu, Y. Xing, Design considerations and fully digital implementation of 400-Hz active power filter for aircraft applications. IEEE Trans. Ind. Electron. 61(8), 3823–3834 (2014)

    Article  Google Scholar 

  25. S. Srianthumrong, H. Akagi, A medium-voltage transformerless ac/dc power conversion system consisting of a diode rectifier and a shunt hybrid filter. IEEE Trans. Ind. Appl 39, 874–882 (2003)

    Article  Google Scholar 

  26. C.S. Lam, M.C. Wong, Y.D. Han, Hysteresis current control of hybrid active power filters. IET Power Electron. 5(7), 1175–1187 (2012)

    Article  Google Scholar 

  27. C.S. Lam, X.X. Cui, W.H. Choi, M.C. Wong, Y.D. Han, Minimum inverter capacity design for three-phase four-wire LC-hybrid active power filters. IET, Power Electron. 5(7), 956–968 (2012)

    Article  Google Scholar 

  28. C.-S. Lam, W.-H. Choi, M.-C. Wong, Y.-D. Han, Adaptive dc-link voltage controlled hybrid active power filters for reactive power compensation. IEEE Trans. Power Electron. 27(4), 1758–1772 (2012)

    Article  Google Scholar 

  29. C.S. Lam, M.C. Wong, W.-H. Choi, X.-X. Cui, H.-M. Mei, J.-Z. Liu, Design and performance of an adaptive low-dc-voltage-controlled LC-Hybrid active power filter with a neutral inductor in three-phase four-wire power systems. IEEE Trans. Power Electron. 61(6), 2635–2647 (2014)

    Google Scholar 

  30. S. Rahmani, N. Mendalek, K. Al-Haddad, Experimental design of a nonlinear control technique for three-phase shunt active power filter. IEEE Trans. Ind. Electron. 57(10), 3364–3375 (2010)

    Article  Google Scholar 

  31. S. Rahmani, A. Hamadi, K. Al-Haddad, A combination of shunt hybrid power filter and thyristor-controlled reactor for power quality. IEEE Trans. Ind. Electron. 61(5), 2152–2164 (2014)

    Article  Google Scholar 

  32. H. Akagi, Y. Kanazawa, A. Nabae, Instantaneous reactive power compensators comprising switching devices without energy storage components. IEEE Trans. Ind. Appl. IA-20(3), 625–630 (1984)

    Google Scholar 

  33. Y. Hu, Z. Zhu, K. Liu, Current control for dual three-phase permanent magnet synchronous motors accounting for current unbalance and harmonics. IEEE Trans. Emerg. Sel. Topics Power Electron. 2(2), 272–284 (2014)

    Article  Google Scholar 

  34. W.C. Lee, T.K. Lee, D.S. Hyun, A three-phase parallel active power filter operating with PCC voltage compensation with consideration for an unbalanced load. IEEE Trans. Power Electron. 17(5), 807–814 (2002)

    Article  Google Scholar 

  35. S. Senini, P.J. Wolfs, Hybrid active filter for harmonically unbalanced three phase three wire railway traction loads. IEEE Trans. Power Electron. 15(4), 702–710 (2000)

    Article  Google Scholar 

  36. S. Rahmani, K. Al-Haddad, F. Fnaiech, A three phase shunt hybrid power filter adopted a general algorithm to compensate harmonics, reactive power and unbalanced load under non ideal mains voltage, in Proceedings of the IEEE International Conference on Industrial Technology, IEEE ICIT04 (2004), pp. 651–656

    Google Scholar 

  37. M. Aredes, H. Akagi, E.H. Watanabe, E. Vergara Salgado, L.F. Encarnacao, Comparisons between the p-q and p-q-r theories in three-phase four-wire systems. IEEE Trans. Power Electron. 24(4), 924–933 (2009)

    Article  Google Scholar 

  38. B. Wen, D. Boroyevich, R. Burgos, P. Mattavelli, Z. Shen, Analysis of D-Q small-signal impedance of grid-tied inverters. IEEE Trans. Power Electron. 31(1), 675–687 (2016)

    Article  Google Scholar 

  39. S. Rahmani, A. Hamadi, K. Al-Haddad, A Lyapunov-function-based control for a three-phase shunt hybrid active filter. IEEE Trans. Ind. Electron. 59(3), 1418–1429 (2012)

    Article  Google Scholar 

  40. L. Shaohua, W. Xiuli, Y. Zhiqing, L. Tai, P. Zhong, Circulating current suppressing strategy for MMC-HVDC based on non ideal proportional resonant controllers under unbalanced grid conditions. IEEE Trans. Power Electron. 30(1), 387–397 (2015)

    Article  Google Scholar 

  41. X. Guo, W. Liu, X. Zhang, X. Sun, Z. Lu, J.M. Guerrero, Flexible control strategy for grid-connected inverter under unbalanced grid faults without PLL. IEEE Trans. Power Electron. 30(4), 1773–1778 (2015)

    Article  Google Scholar 

  42. K. Ma, W. Chen, M. Liserre, F. Blaabjerg, Power controllability of a three-phase converter with an unbalanced AC source. IEEE Trans. Power Electron. 30(3), 1591–1604 (2015)

    Article  Google Scholar 

  43. M. Castilla, J. Miret, A. Camacho, L. Garcia de Vicuna, J. Matas, Modeling and design of voltage support control schemes for three-phase inverters operating under unbalanced grid conditions. IEEE Trans. Power Electron. 29(11), 6139–6150 (2014)

    Article  Google Scholar 

  44. P. Salmeron, S.P. Litran, A control strategy for hybrid power filter to compensate four-wires three-phase systems. IEEE Trans. Power Electron. 25(7), 1923–1931 (2010)

    Article  Google Scholar 

  45. L.S. Czarnecki, S.E. Pearce, Compensation objectives and current’ physical components-based generation of reference signals for shunt switching compensator control. IET Power Electron. 2(1), 33–41 (2009)

    Article  Google Scholar 

  46. L.S Czarnecki, P.M. Haley, Unbalanced power in four-wire systems and its reactive compensation. IEEE Trans. Power Deliv. 30(1), 53–63 (2015)

    Google Scholar 

  47. W. Jiang, W. Li, Z. Wu, Y. She, Z. Tao, Space-vector pulse-width modulation algorithm for multilevel voltage source inverters based on matrix transformation and including operation in the over-modulation region. IET Power Electron. 7(12), 2925–2933 (2014)

    Article  Google Scholar 

  48. X. Mao, R. Ayyanar, H. Krishnamurthy, Optimal variable switching frequency scheme for reducing switching loss in single-phase inverters based on time-domain ripple analysis. IEEE Trans. Power Electron. 24(4), 991–1001 (2009)

    Article  Google Scholar 

  49. D. Jiang, F. Wang, Variable switching frequency PWM for three-phase converters based on current ripple prediction. IEEE Trans. Power Electron. 28(11), 4951–4961 (2013)

    Article  Google Scholar 

  50. D. Zhang, F. Wang, S. EI-Barbari, J. A. Sabate, D. Boroyevich, Improved asymmetric space vector modulation for voltage source converters with low carrier ratio. IEEE Trans. Power Electron. 27(3), 1130–1140 (2012)

    Google Scholar 

  51. L. Wei, R.A. Lukaszewski, Pulse width modulation (PWM) rectifier with variable switching frequency. U.S. patent 7 190 143 132, Mar 2007

    Google Scholar 

  52. B. Angélico, L. Campanhol, S. da Silva, Proportional integral/proportional integral-derivative tuning procedure of a single-phase shunt active power filter using Bode diagram. IET Power Electron. 7(10), 2647–2659 (2014)

    Google Scholar 

  53. M.S. Hamad, M.I. Masoud, B.W. Williams, S. Finney, Medium voltage 12-pulse converter: ac side compensation using a shunt active power filter in a novel front end transformer configuration. IET Power Electron. 5(8), 1315–1323 (2012)

    Google Scholar 

  54. A.F. Zobaa, Optimal multiobjective design of hybrid active power filters considering a distorted environment. IEEE Trans. Ind. Electron. 61(5), 107–114 (2014)

    Google Scholar 

  55. J.C. Wu, H.L. Jou, H.H. Hsaio, S.T. Xiao, A new hybrid power conditioner for suppressing harmonics and neutral-line current in three-phase four-wire distribution power systems. IEEE Trans. Power Deliv. 29(4), 1525–1532 (2014)

    Article  Google Scholar 

  56. S.K. Khadem, M. Basu, M.F. Conlon, Harmonic power compensation capacity of shunt active power filter and its relationship with design parameters. IET Power Electron. 7(2), 418–430 (2014)

    Article  Google Scholar 

  57. S.K. Chauhan, M.C. Shah, R.R. Tiwari, P.N. Tekwani, Analysis, design and digital implementation of a shunt active power filter with different schemes of reference current generation. IET Power Electron. 7(3), 627–639 (2014)

    Article  Google Scholar 

  58. S. Rahmani, A. Hamadi, N. Mendalek, K. Al-Haddad, A new control technique for three-phase shunt hybrid power filter. IEEE Trans. Ind. Electron. 56(8), 2904–2915 (2009)

    Article  Google Scholar 

  59. L. Wang, C.S. Lam, M.C. Wong, A SVC-HAPF with wide compensation range and low dc-link voltage. IEEE Trans. Ind. Electron. 63(6), 3333–3343 (2016)

    Article  Google Scholar 

  60. L. Wang, C.S. Lam, M.C. Wong, An unbalanced control strategy for a thyristor controlled LC-coupling hybrid active power filter (SVC-HAPF) in three-phase three-wire systems. IEEE Trans. Power Electron. 32(2), 1056–1069 (2017)

    Article  Google Scholar 

  61. L. Wang, C.S. Lam, M.C. Wong, Hardware and software design of a low dc-link voltage and wide compensation range thyristor controlled LC-coupling hybrid active power filter, in TENCON 2015 IEEE Region 10 Conference proceedings, Nov 2015

    Google Scholar 

  62. L. Wang, C.S. Lam, M.C. Wong, Modeling and parameter design of thyristor controlled LC-coupled hybrid active power filter (SVC-HAPF) for unbalanced compensation. IEEE Trans. Ind. Electron. 64(3), 1827–1840 (2017)

    Article  Google Scholar 

  63. C.S. Lam, L. Wang, S.I. Ho, M.C. Wong, Adaptive thyristor controlled LC-hybrid active power filter for reactive power and current harmonics compensation with switching loss reduction. IEEE Trans. Power Electron. 32(10), 7577–7590 (2017)

    Article  Google Scholar 

  64. L. Wang, C.S. Lam, M.C. Wong, Selective Compensation of distortion, unbalanced and reactive power of a thyristor controlled LC-coupling hybrid active power filter (SVC-HAPF). IEEE Trans. Power Electron. 32(12), 9065–9077 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Wang .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, L., Wong, MC., Lam, CS. (2019). Introduction. In: Adaptive Hybrid Active Power Filters. Power Systems. Springer, Singapore. https://doi.org/10.1007/978-981-10-8827-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-8827-8_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-8826-1

  • Online ISBN: 978-981-10-8827-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics