Skip to main content

Quantum Plasmon Resonances Controlled by Molecular Tunnel Junction

  • Chapter
  • First Online:
Molecular Electronic Control Over Tunneling Charge Transfer Plasmons Modes

Part of the book series: Springer Theses ((Springer Theses))

Abstract

Quantum tunneling between two plasmonic resonators links non-linear quantum optics with terahertz nanoelectronics. Direct observation of and control over quantum plasmon resonances at length scales in the range 0.4–1.3 nm across molecular tunnel junctions made of two plasmonic resonators bridged by self-assembled monolayers (SAMs) were demonstrated. The tunnel barrier width and height are controlled by the properties of the molecules. Using electron energy-loss spectroscopy, a plasmon mode, the tunneling charge transfer plasmon, whose frequency (ranging from 140 to 245 THz) is dependent on the molecules bridging the gap was observed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tame MS, McEnery KR, Ozdemir SK, Lee J, Maier SA, Kim MS. Quantum plasmonics. Nat Phys. 2013;9(6):329–40.

    Article  CAS  Google Scholar 

  2. Brongersma ML, Shalaev VM. The case for plasmonics. Science. 2010;328(5977):440–1.

    Article  CAS  PubMed  Google Scholar 

  3. Romero I, Aizpurua J, Bryant GW, García De Abajo FJ. Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimers. Opt Express. 2006;14(21):9988–99.

    Article  PubMed  Google Scholar 

  4. Zuloaga J, Prodan E, Nordlander P. Quantum description of the plasmon resonances of a nanoparticle dimer. Nano Lett. 2009;9(2):887–91.

    Article  CAS  PubMed  Google Scholar 

  5. Marinica DC, Kazansky AK, Nordlander P, Aizpurua J, Borisov AG. Quantum plasmonics: nonlinear effects in the field enhancement of a plasmonic nanoparticle dimer. Nano Lett. 2012;12(3):1333–9.

    Article  CAS  PubMed  Google Scholar 

  6. Savage KJ, Hawkeye MM, Esteban R, Borisov AG, Aizpurua J, Baumberg JJ. Revealing the quantum regime in tunnelling plasmonics. Nature. 2012;491(7425):574–7.

    Article  CAS  PubMed  Google Scholar 

  7. Song P, Nordlander P, Gao S. Quantum mechanical study of the coupling of plasmon excitations to atomic-scale electron transport. J Chem Phys. 2011;134(7).

    Google Scholar 

  8. Kern J, Großmann S, Tarakina NV, Häckel T, Emmerling M, Kamp M, Huang J-S, Biagioni P, Prangsma JC, Hecht B. Atomic-scale confinement of resonant optical fields. Nano Lett. 2012;12(11):5504–9.

    Article  CAS  PubMed  Google Scholar 

  9. Esteban R, Borisov AG, Nordlander P, Aizpurua J. Bridging quantum and classical plasmonics with a quantum-corrected model. Nat Commun. 2012;3:825.

    Article  CAS  PubMed  Google Scholar 

  10. Scholl JA, García-Etxarri A, Koh AL, Dionne JA. Observation of quantum tunneling between two plasmonic nanoparticles. Nano Lett. 2012;13(2):564–9.

    Article  CAS  Google Scholar 

  11. Duan H, Fernández-Domínguez AI, Bosman M, Maier SA, Yang JKW. Nanoplasmonics: classical down to the nanometer scale. Nano Lett. 2012;12(3):1683–9.

    Article  CAS  PubMed  Google Scholar 

  12. Henzie J, Andrews SC, Ling XY, Li Z, Yang P. Oriented assembly of polyhedral plasmonic nanoparticle clusters. Proc Natl Acad Sci. 2013;110(17):6640–5.

    Article  PubMed  Google Scholar 

  13. Tan SF, Wu L, Yang JKW, Bai P, Bosman M, Nijhuis CA. Quantum plasmon resonances controlled by molecular tunnel junctions. Science. 2014;343(6178):1496–9.

    Article  CAS  PubMed  Google Scholar 

  14. Salomon A, Cahen D, Lindsay S, Tomfohr J, Engelkes VB, Frisbie CD. Comparison of electronic transport measurements on organic molecules. Adv Mater. 2003;15(22):1881–90.

    Article  CAS  Google Scholar 

  15. Reed MA, Zhou C, Muller CJ, Burgin TP, Tour JM. Conductance of a molecular junction. Science. 1997;278(5336):252–4.

    Article  CAS  Google Scholar 

  16. Cui XD, Primak A, Zarate X, Tomfohr J, Sankey OF, Moore AL, Moore TA, Gust D, Nagahara LA, Lindsay SM. Changes in the electronic properties of a molecule when it is wired into a circuit. J Phys Chem B. 2002;106(34):8609–14.

    Article  CAS  Google Scholar 

  17. Nijhuis CA, Reus WF, Barber JR, Whitesides GM. Comparison of SAM-based junctions with Ga2O3/EGaIn top electrodes to other large-area tunneling junctions. J Phys Chem C. 2012;116(26):14139–50.

    Article  CAS  Google Scholar 

  18. Joachim C, Ratner MA. Molecular electronics: some views on transport junctions and beyond. Proc Natl Acad Sci USA. 2005;102(25):8801–8.

    Article  CAS  PubMed  Google Scholar 

  19. McCreery RL. Molecular electronic junctions. Chem Mater. 2004;16(23):4477–96.

    Article  CAS  Google Scholar 

  20. Wu L, Duan H, Bai P, Bosman M, Yang JKW, Li E. Fowler-Nordheim tunneling induced charge transfer plasmons between nearly touching nanoparticles. ACS Nano. 2012;7(1):707–16.

    Article  CAS  PubMed  Google Scholar 

  21. Nelayah J, Kociak M, Stephan O, Garcia de Abajo FJ, Tence M, Henrard L, Taverna D, Pastoriza-Santos I, Liz-Marzan LM, Colliex C. Mapping surface plasmons on a single metallic nanoparticle. Nat Phys. 2007;3(5):348–53.

    Article  CAS  Google Scholar 

  22. Michel B, Vicki JK, Masashi W, Abbas IM, Michael BC. Mapping surface plasmons at the nanometre scale with an electron beam. Nanotechnology. 2007;18(16):165505.

    Article  CAS  Google Scholar 

  23. Bosman M, Ye E, Tan SF, Nijhuis CA, Yang JKW, Marty R, Mlayah A, Arbouet A, Girard C, Han M-Y. Surface plasmon damping quantified with an electron nanoprobe. Sci Rep. 2013;3.

    Google Scholar 

  24. Strange M, Rostgaard C, Häkkinen H, Thygesen KS. Self-consistent GW calculations of electronic transport in thiol- and amine-linked molecular junctions. Phys Rev B. 2011;83(11):115108.

    Article  CAS  Google Scholar 

  25. Reddy P, Jang S-Y, Segalman RA, Majumdar A. Thermoelectricity in molecular junctions. Science. 2007;315(5818):1568–71.

    Article  CAS  PubMed  Google Scholar 

  26. Xiao X, Xu B, Tao NJ. Measurement of single molecule conductance:  benzenedithiol and benzenedimethanethiol. Nano Lett . 004;4(2):267–71.

    Google Scholar 

  27. Scheer AM, Gallup GA, Burrow PD. Unoccupied orbital energies of 1,4-benzenedithiol and the HOMO–LUMO gap. Chem Phys Lett. 2008;466(4–6):131–5.

    Article  CAS  Google Scholar 

  28. Wold DJ, Frisbie CD. Formation of metal–molecule–metal tunnel junctions: microcontacts to alkanethiol monolayers with a conducting AFM tip. J Am Chem Soc. 2000;122(12):2970–1.

    Article  CAS  Google Scholar 

  29. Wu S, Gonzalez MT, Huber R, Grunder S, Mayor M, Schonenberger C, Calame M. Molecular junctions based on aromatic coupling. Nat Nano. 2008;3(9):569–74.

    Article  CAS  Google Scholar 

  30. Ho Choi S, Kim B, Frisbie CD. Electrical resistance of long conjugated molecular wires. Science. 2008;320(5882):1482–6.

    Article  CAS  PubMed  Google Scholar 

  31. Pontes RB, Rocha AR, Sanvito S, Fazzio A, da Silva AJR. Ab initio calculations of structural evolution and conductance of benzene-1,4-dithiol on gold leads. ACS Nano. 2011;5(2):795–804.

    Article  CAS  PubMed  Google Scholar 

  32. Palik ED. Handbook of optical constants of solids. San Diego, California: Academic; 1991.

    Google Scholar 

  33. Haynes WM. CRC handbook of chemistry and physics. 94th ed. Taylor and Francis; 2013.

    Google Scholar 

  34. Bosman M, Zhang L, Duan H, Tan SF, Nijhuis CA, Qiu CW, Yang JKW. Encapsulated annealing: enhancing the plasmon quality factor in lithographically–defined nanostructures. Sci Rep. 2014; 4.

    Google Scholar 

  35. Sellers H, Ulman A, Shnidman Y, Eilers JE. Structure and binding of alkanethiolates on gold and silver surfaces: implications for self-assembled monolayers. J Am Chem Soc. 1993;115(21):9389–401.

    Article  CAS  Google Scholar 

  36. Cox EG, Cruickshank DWJ, Smith JAS. The crystal structure of benzene at −3 °C. Proc Royal Soc Lon Ser A Math Phys Sci. 1958;247(1248):1–21.

    Google Scholar 

  37. Kiguchi MSN, Murakoshi K. In-situ preparation of a single molecular junction with mechanically controllable break junctions in vacuum. J Phys Conf Ser. 2008;100:052–059.

    Google Scholar 

  38. Kim Y, Pietsch T, Erbe A, Belzig W, Scheer E. Benzenedithiol: a broad-range single-channel molecular conductor. Nano Lett. 2011;11(9):3734–8.

    Article  CAS  PubMed  Google Scholar 

  39. García de Abajo FJ. Optical excitations in electron microscopy. Rev Mod Phys. 2010;82(1):209–275.

    Google Scholar 

  40. Bigelow NW, Vaschillo A, Iberi V, Camden JP, Masiello DJ. Characterization of the electron- and photon-driven plasmonic excitations of metal nanorods. ACS Nano. 2012;6(8):7497–504.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu Fen Tan .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tan, S.F. (2018). Quantum Plasmon Resonances Controlled by Molecular Tunnel Junction. In: Molecular Electronic Control Over Tunneling Charge Transfer Plasmons Modes. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-10-8803-2_4

Download citation

Publish with us

Policies and ethics