Antioxidant and Anti-inflammatory Action of Thymoquinone



Antioxidant and anti-inflammatory action of thymoquinone (TQ) may be utilized in the treatment of inflammatory diseases such as prostatitis, neuropsychiatric, mucositis, etc. TQ has been shown to have potential as a supplement co-drug against methotrexate-induced intestinal and nephrotoxicity in cancer chemotherapy. Besides, it suppresses the characteristics of airway inflammation by reducing the production of inflammatory mediators such as 5-lipoxygenase, leukotriene, and eosinophils. NF-κB is a transcription factor that plays a role in inflammatory diseases. Suppression of NF-κB by TQ has a role in its anti-inflammatory actions. Subsequently, inhibition of inflammatory cytokines and mediators which are key components in the process of inflammation is exploited to reduce inflammation and damage. TQ inhibits LPS-induced IL-1β, ΙL-6, and ΙL-12p40/70 production, which suggests the potential of TQ in suppressing pro-inflammatory cytokines. It ameliorates sodium nitrite-induced elevation of NFκB and pro-inflammatory cytokines (TNF-α, IL-1β, and IL-6) in testicular.


  1. Abdel-Wahab WM (2013) Protective effect of thymoquinone on sodium fluoride-induced hepatotoxicity and oxidative stress in rats. N Basic Appl Res 66(5):263–270Google Scholar
  2. Abdel Baky NA, Zaidi ZF, Fatani AJ et al (2010) Nitric oxide pros and cons: the role of L-arginine, a nitric oxide precursor, and idebenone, a coenzyme-Q analogue in ameliorating cerebral hypoxia in rat. Brain Res Bull 83:49–56PubMedCrossRefGoogle Scholar
  3. AbdelFattah AM, Matsumoto K, Watanabe H (2000) Antinociceptive effects of Nigella sativa oil and its major component, thymoquinone, in mice. Eur J Pharmacol 400:8997Google Scholar
  4. Abdel-wahab SI, Sheikh BY, Taha MM (2013) Thymoquinone-loaded nanostructured lipid carriers: preparation, gastroprotection, in vitro toxicity, and pharmacokinetic properties after extravascular administration. Int J Nanomedicine 8:216372Google Scholar
  5. Abdel-Zaher AO, Abdel-Rahman MS, ELwasei FM (2010) Blockade of nitric oxide overproduction and oxidative stress by Nigella sativa oil attenuates morphine-induced tolerance and dependence in mice. Neurochem Res 35(10):1557–1565PubMedCrossRefGoogle Scholar
  6. Afifi FU, Kasabri V (2013) Pharmacological and phytochemical appraisal of selected medicinal plants from Jordan with claimed antidiabetic activities. Sci Pharm 81(4):889–932PubMedPubMedCentralCrossRefGoogle Scholar
  7. Aggarwal BB (2004) Nuclear factor-κB: the enemy within. Cancer Cell 6:203–208PubMedCrossRefPubMedCentralGoogle Scholar
  8. Aggarwal BB, Sethi G, Ahn KS et al (2006) Targeting signal-transducer-and-activator-of-transcription-3 for prevention and therapy of cancer: modern target but ancient solution. Ann N Y Acad Sci 1091:151–169PubMedCrossRefGoogle Scholar
  9. Aggarwal BB, Vijayalekshmi RV, Sung B (2009) Targeting inflammatory pathways for prevention and therapy of cancer: short-term friend, long-term foe. Clin Cancer Res 15:425–430PubMedCrossRefGoogle Scholar
  10. Ahmad S, Beg ZH (2013) Elucidation of mechanisms of actions of thymoquinone-enriched methanolic and volatile oil extracts from Nigella sativa against cardiovascular risk parameters in experimental hyperlipidemia. Lipids Health Dis 12:86PubMedPubMedCentralCrossRefGoogle Scholar
  11. Ahmad I, Muneer KM, Tamimi IA et al (2013) Thymoquinone suppresses metastasis of melanoma cells by inhibition of NLRP3 inflammasome. Toxicol Appl Pharmacol 270(1):70–76PubMedCrossRefGoogle Scholar
  12. Ahn KS, Aggarwal BB (2005) Transcription factor NF-κB: a sensor for smoke and stress signals. Ann N Y Acad Sci 1056:218–233PubMedCrossRefGoogle Scholar
  13. Albensi BC, Mattson MP (2000) Evidence for the involvement of TNF and NF-kappaB in hippocampal synaptic plasticity. Synapse 35:151–159PubMedCrossRefGoogle Scholar
  14. Alenzi F, El-Bolkiny Y-S, Salem M (2010) Protective effects of Nigella sativa oil and thymoquinone against toxicity induced by the anticancer drug cyclophosphamide. Br J Biomed Sci 67(1):20–28PubMedPubMedCentralCrossRefGoogle Scholar
  15. Al-Gayyar MM, Alyoussef A, Hamdan AM et al (2015) Cod liver oil ameliorates sodium nitrite-induced insulin resistance and degradation of rat hepatic glycogen through inhibition of cAMP/PKA pathway. Life Sci 120:13–21PubMedCrossRefGoogle Scholar
  16. AlGhamdi MS (2001) The anti-inflammatory, analgesic and antipyretic activity of Nigella sativa. J Ethnopharmacol 76:4548Google Scholar
  17. Allison DJ, Ditor DS (2014) Immune dysfunction and chronic inflammation following spinal cord injury. Spinal Cord 53:14–18PubMedCrossRefGoogle Scholar
  18. Ammar el SM, Gameil NM, Shawky NM et al (2011) Comparative evaluation of anti-inflammatory properties of thymoquinone and curcumin using an asthmatic murine model. Int Immuno Pharmacol 11:2232–2236CrossRefGoogle Scholar
  19. Ayan M, Tas U, Sogut E et al (2016) Protective effect of thymoquinone against testicular torsion induced oxidative injury. Andrologia 48(2):143–151PubMedCrossRefGoogle Scholar
  20. Badary OA, Taha RA, Gamal el-Din AM et al (2003) Thymoquinone is a potent superoxide anion scavenger. Drug Chem Toxicol 26:87–98PubMedPubMedCentralCrossRefGoogle Scholar
  21. Badr G, Lefevre EA, Mohany M (2011) Thymoquinone inhibits the CXCL12-induced chemotaxis of multiple myeloma cells and increases their susceptibility to Fas-mediated apoptosis. PLoS One 6(9):e23741PubMedPubMedCentralCrossRefGoogle Scholar
  22. Bamosa AO, Ali BA, al-Hawsawi ZA (2002) The effect of thymoquinone on blood lipids in rats. Indian J Physiol Pharmacol 46:195–201PubMedGoogle Scholar
  23. Barakat EMF, El Wakeel LM, Hagag RS (2013) Effects of Nigella sativa on outcome of hepatitis C in Egypt. World J Gastroenterol 19(16):2529–2536PubMedPubMedCentralCrossRefGoogle Scholar
  24. Bayir Y, Karagoz Y, Karakus E et al (2012) Nigella sativa reduces tissue damage in rat ovaries subjected to torsion and detorsion: oxidative stress, proinflammatory response and histopathological evaluation. Gynecol Obstet Investig 74(1):41–49CrossRefGoogle Scholar
  25. Blaszczyk I, Birkner E, Kasperczyk S (2011) Influence of methionine on toxicity of fluoride in the liver of rats. Biol Trace Elem Res 139:325–331PubMedCrossRefGoogle Scholar
  26. Boots AW, Haenen GR, Bast A (2003) Oxidant metabolism in chronic obstructive pulmonary disease. Eur Respir J Suppl. 46:14s–27sCrossRefGoogle Scholar
  27. Chehl N, Chipitsyna G, Gong Q et al (2009) Anti-inflammatory effects of the Nigella sativa seed extract, thymoquinone, in pancreatic cancer cells. HPB (Oxford) 11(5):373–381CrossRefGoogle Scholar
  28. Chen C, Tian L, Zhang M et al (2013) Protective effect of amifostine on high-dose methotrexate induced small intestinal mucositis in mice. Dig Dis Sci 58:313443Google Scholar
  29. Chinoy NJ (2003) Fluoride stress on antioxidant defense systems. Fluoride 36:138–141Google Scholar
  30. Chlubek D (2003) Fluoride and oxidative stress. Fluoride 36(4):217–228Google Scholar
  31. Costantino L, Barlocco D (2008) STAT 3 as a target for cancer drug discovery. Curr Med Chem 15:834–843PubMedCrossRefGoogle Scholar
  32. Darnell JE Jr (2002) Transcription factors as targets for cancer therapy. Nat Rev Cancer 2:740–749PubMedCrossRefGoogle Scholar
  33. De Marzo AM, Platz EA, Sutcliffe S (2007) Inflammation in prostate carcinogenesis. Nat Rev Cancer 7:256–269PubMedPubMedCentralCrossRefGoogle Scholar
  34. Ebrahimi SS, Oryan S, Izadpanah E et al (2017) Thymoquinone exerts neuroprotective effect in animal model of Parkinson’s disease. Toxicol Lett 276:108–114PubMedCrossRefGoogle Scholar
  35. Effenberger K, Breyer S, Schobert R (2010) Terpene conjugates of the Nigella sativa seed-oil constituent thymoquinone with enhanced efficacy in cancer cells. Chem Biodivers 7(1):129–139PubMedCrossRefGoogle Scholar
  36. El-Dakhakhny M, Madi NJ, Lembert N et al (2002) Nigella sativa oil, nigellone and derived thymoquinone inhibit synthesis of 5-lipoxygenase products in polymorphonuclear leukocytes from rats. J Ethnopharmacol 81(2):161–164PubMedCrossRefGoogle Scholar
  37. El-Gazzar MA, El-Mezayen R, Nicolls MR et al (2007) Thymoquinone attenuates proinflammatory responses in lipopolysaccharide-activated mast cells by modulating NF-nB nuclear transactivation. Biochim Biophys Acta 1770:556–564PubMedCrossRefGoogle Scholar
  38. El-Mahdy MA, Zhu Q, Wang QE et al (2005) Thymoquinone induces apoptosis through activation of caspase-8 and mitochondrial events in p53-null myeloblastic leukemia HL-60 cells. Int J Cancer 117(3):409–417PubMedPubMedCentralCrossRefGoogle Scholar
  39. El-Mahmoudy A, Matsuyama H, Borgan MA et al (2002) Thymoquinone suppresses expression of inducible nitric oxide synthase in rat macrophages. Int Immunopharmacol 2(11):1603–1611PubMedCrossRefGoogle Scholar
  40. El-Mahmoudy A, Shimizu Y, Shiina T et al (2005) Macrophage-derived cytokine and nitric oxide profiles in type I and type II diabetes mellitus: effect of thymoquinone. Acta Diabetol 42(1):23–30PubMedPubMedCentralCrossRefGoogle Scholar
  41. El-Mezayen R, El-Gazzar M, Nicolls MR et al (2006) Effect of thymoquinone on cyclooxygenase expression and prostaglandin production in a mouse model of allergic airway inflammation. Immunol Lett 106:72–81PubMedCrossRefGoogle Scholar
  42. El-Sheikh AAK, Morsy MA, Abdalla AM et al (2015) Mechanisms of thymoquinone hepatorenal protection in methotrexate-induced toxicity in rats. Mediators Inflamm 2015:12 pages, Article ID 859383CrossRefGoogle Scholar
  43. El-Sheikh AA, Morsy MA, Hamouda AH (2016) Protective mechanisms of thymoquinone on methotrexate-induced intestinal toxicity in rats. Pharmacogn Mag 12(Suppl 1):S76–S81PubMedPubMedCentralGoogle Scholar
  44. Fouad AA, Jresat I (2015) Thymoquinone therapy abrogates toxic effect of cadmium on rat testes. Andrologia 47:417–426PubMedCrossRefGoogle Scholar
  45. Fouda AM, Daba MH, Dahab GM et al (2008) Thymoquinone ameliorates renal oxidative damage and proliferative response induced by mercuric chloride in rats. Basic Clin Pharmacol Toxicol 103:109–118PubMedCrossRefGoogle Scholar
  46. Gali-Muhtasib HU, Abou Kheir WG, Kheir LA et al (2004) Molecular pathway for thymoquinone-induced cell-cycle arrest and apoptosis in neoplastic keratinocytes. Anti-Cancer Drugs 15(4):389–399PubMedPubMedCentralCrossRefGoogle Scholar
  47. Garcia-Pineres AJ, Castro V, Mora G et al (2001) Cysteine 38 in p65/NF-κB plays a crucial role in DNA binding inhibition by sesquiterpene lactones. J Biol Chem 276:39713–39720PubMedCrossRefGoogle Scholar
  48. Ger J, Kao H, Shih TS et al (1996) Fatal toxic methemoglobinemia due to occupational exposure to methyl nitrite. Chin Med J 57:S78Google Scholar
  49. Gladwin MT, Crawford JH, Patel RP (2004) The biochemistry of nitric oxide, nitrite, and hemoglobin: role in blood flow regulation. Free Rad Biol Med 36:707–717PubMedCrossRefGoogle Scholar
  50. Glauser MP, Meylan P, Bille J (1987) The inflammatory response and tissue damage: the example of renal scars following acute renal infection. Pediatr Nephrol 1:615–622PubMedCrossRefGoogle Scholar
  51. Grucka-Mamczar E, Birkner E, Baszczyk I et al (2009) The influence of sodium fluoride on antioxidants and the concentration of malondialdehyde in rat blood plasma. Fluoride 42(2):101–104Google Scholar
  52. Gupta R, Verma I, Sharma S (2004) Prevention of tissue injury in an ascending mouse model of chronic pyelonephritis role of free radical scavengers. Comp Immunol Microbiol Infect Dis 27:225–234PubMedCrossRefGoogle Scholar
  53. Gurung RL, Lim SN, Khaw AK et al (2010) Thymoquinone induces telomere shortening, DNA damage and apoptosis in human glioblastoma cells. PLoS One 5(8):e12124PubMedPubMedCentralCrossRefGoogle Scholar
  54. Gyoneva S, Shapiro L, Lazo C et al (2014) Adenosine A2A receptor antagonism reverses inflammation induced impairment of microglial process extension in a model of Parkinson’s disease. Neurobiol Dis 67:191–202PubMedPubMedCentralCrossRefGoogle Scholar
  55. Hassan HA, El-Agmy SM, Gaur RL et al (2009) In vivo evidence of hepato- and reno-protective effect of garlic oil against sodium nitrite-induced oxidative stress. Int J Biol Sci 5:249–255PubMedPubMedCentralCrossRefGoogle Scholar
  56. Hassan HA, Hafez HS, Zeghebar FE (2010) Garlic oil as a modulating agent for oxidative stress and neurotoxicity induced by sodium nitrite in male albino rats. Food Chem Toxicol 48:1980–1985PubMedCrossRefGoogle Scholar
  57. Houghton PJ, Zarka R, de lasHeras B et al (1995) Fixed oil of Nigella sativa and derived thymoquinone inhibit eicosanoid generation in leukocytes and membrane lipid peroxidation. Planta Med 61:3336Google Scholar
  58. Hussain AR, Ahmed M, Ahmed S et al (2011) Thymoquinone suppresses growth and induces apoptosis via generation of reactive oxygen species in primary effusion lymphoma. Free Radic Biol Med 50(8):978–987PubMedCrossRefGoogle Scholar
  59. Ihle JN (1996) STATs: signal transducers and activators of transcription. Cell 84:331–334PubMedCrossRefGoogle Scholar
  60. Inci M, Davarci M, Inci M et al (2013) Anti-inflammatory and antioxidant activity of thymoquinone in a rat model of acute bacterial prostatitis. Hum Exp Toxicol 32(4):354–361PubMedCrossRefGoogle Scholar
  61. Ismail M, Al-Naqeep G, Chan K (2010) Nigella sativa thymoquinone-rich fraction greatly improves plasma antioxidant capacity and expression of antioxidant genes in hypercholesterolemic rats. Free Radic Biol Med 48:664–672PubMedCrossRefGoogle Scholar
  62. Kanoh S, Kobayashi H, Motoyoshi K (2005) Exhaled ethane: an in vivo biomarker of lipid peroxidation in interstitial lung diseases. Chest 128:2387–2392PubMedCrossRefGoogle Scholar
  63. Katzung BG, Masters SB, Trevor AJ (2009a) NSAIDs. In: Basic and clinical pharmacology, 11th edn. McGraw Hill, LANGE Medical Books, New York, p622623Google Scholar
  64. Katzung BG, Masters SB, Trevor AJ (2009b) Opioid analgesics. In: Basic and clinical pharmacology, 11th edn. McGraw Hill, LANGE Medical Books, New York, p534537Google Scholar
  65. Khanna T, Zaidi FA, Dandiya PC (1993) CNS and analgesic studies of Nigella sativa. Fitoterapia 5:407–410Google Scholar
  66. Kim R, Emi M, Tanabe K et al (2006) Regulation and interplay of apoptotic and non-apoptotic cell death. J Pathol 208:319–326PubMedCrossRefGoogle Scholar
  67. Knaapen AM, Seiler F, Schilderman PA et al (1999) Neutrophils cause oxidative DNA damage in alveolar epithelial cells. Free Radic Biol Med 27:234–240PubMedCrossRefGoogle Scholar
  68. Kolli VK, Kanakasabapathy I, Faith M (2013) A preclinical study on the M protective effect of melatonin against methotrexate induced small intestinal damage: effect mediated by attenuation of nitrosative stress, protein tyrosine nitration, and PARP activation. Cancer Chemother Pharmacol 71:120918CrossRefGoogle Scholar
  69. Koppelmann T, Pollak Y, Mogilner J et al (2012) Dietary L-arginine supplementation reduces methotrexate induced intestinal mucosal injury in rat. BMC Gastroenterol 12:41PubMedPubMedCentralCrossRefGoogle Scholar
  70. Krieger JN, Nyberg L Jr, Nickel JC (1999) NIH consensus definition and classification of prostatitis. JAMA 282:236–237PubMedCrossRefGoogle Scholar
  71. Kundu JK, Liu L, Shin JW et al (2013) Thymoquinone inhibits phorbol ester induced activation of NF-kB and expression of COX-2, and induces expression of cytoprotective enzymes in mouse skin in vivo. Biochem Biophys Res Commun 438(4):721–727PubMedCrossRefGoogle Scholar
  72. Landa P, Kutil Z, Temml V et al (2013) Inhibition of in vitro leukotriene B4 biosynthesis in human neutrophil granulocytes and docking studies of natural quinones. Nat Prod Commun 8:105–108PubMedGoogle Scholar
  73. Lee H, Herrmann A, Deng JH et al (2009) Persistently activated Stat3 maintains constitutive NF-kappaB activity in tumors. Cancer Cell 15:283–293PubMedPubMedCentralCrossRefGoogle Scholar
  74. Lei X, Lv X, Liu M et al (2012) Thymoquinone inhibits growth and augments 5-fluorouracil-induced apoptosis in gastric cancer cells both in vitro and in vivo. Biochem Biophys Res Commun 417(2):864–868PubMedPubMedCentralCrossRefGoogle Scholar
  75. Li F, Rajendran P, Sethi G (2010) Thymoquinone inhibits proliferation, induces apoptosis and chemosensitizes human multiple myeloma cells through suppression of signal transducer and activator of transcription 3 activation pathway. Br J Pharmacol 161(3):541–554PubMedPubMedCentralCrossRefGoogle Scholar
  76. Mabrouk A, Cheikh HB (2016) Thymoquinone supplementation ameliorates lead-induced testis function impairment in adult rats. Toxicol Ind Health 32(6):1114–1121PubMedCrossRefGoogle Scholar
  77. Mabrouk GM, Moselhy SS, Zohny SF et al (2002) Inhibition of methylnitrosourea (MNU) induced oxidative stress and carcinogenesis by orally administered bee honey and Nigella grains in Sprague Dawely rats. J Exp Clin Cancer Res 21:341–346PubMedGoogle Scholar
  78. Mansour MA, Nagi MN, El-Khatib AS, Al-Bekairi AM (2002) Effects of thymoquinone on antioxidant enzyme activities, lipid peroxidation and DT-diaphorase in different tissues of mice: a possible mechanism of action. Cell Biochem Funct 20:143–151PubMedPubMedCentralCrossRefGoogle Scholar
  79. Marsik P, Kokoska L, Landa P (2005) In vitro inhibitory effects of thymol and quinones of Nigella sativa seeds on cyclooxygenase-1- and -2-catalyzed prostaglandin E2 biosyntheses. Planta Med 71:739–742PubMedCrossRefGoogle Scholar
  80. Mehta JL, Rasouli N, Sinha AK et al (2006) Oxidative stress in diabetes: a mechanistic overview of its effects on atherogenesis and myocardial dysfunction. Int J Biochem Cell Biol 38:794–803PubMedCrossRefGoogle Scholar
  81. Millan-Rodriguez F, Palou J, Bujons-Tur A (2006) Acute bacterial prostatitis: two different sub-categories according to a previous manipulation of the lower urinary tract. World J Urol 24:45–50PubMedCrossRefGoogle Scholar
  82. Mohamed A, Afridi DM, Garani O et al (2005) Thymoquinone inhibits the activation of NF-nB in the brain and spinal cord of experimental autoimmune encephalomyelitis. Biomed Sci Instrum 41:388–393PubMedGoogle Scholar
  83. Morsy MA, Ibrahim SA, Amin EF et al (2013) Curcumin ameliorates methotrexate induced nephrotoxicity in rats. Adv Pharmacol Sci 2013:7Google Scholar
  84. Mutabagani A, El-Mahdy SAM (1997) A study of the anti-inflammatory activity of Nigella sativa L and thymoquinone in rats. Saudi Pharm J 5:110113Google Scholar
  85. Nabavi SM, Nabavi SF, Eslami S et al (2012) In vivo protective effects of quercetin against sodium fluoride-induced oxidative stress in the hepatic tissue. Food Chem 132:931–935CrossRefGoogle Scholar
  86. Nagi MN, Mansour MA (2000) Protective effect of thymoquinone against doxorubicin-induced cardiotoxicity in rats: a possible mechanism of protection. Pharmacol Res 41:283–289PubMedCrossRefGoogle Scholar
  87. Nehru B, Anand P (2005) Oxidative damage following chronic aluminum exposure in adult and pup rat brains. J Trace Elem Med Biol 19:203–208PubMedCrossRefGoogle Scholar
  88. Niu G, Wright KL, Huang M et al (2002) Constitutive Stat3 activity up-regulates VEGF expression and tumor angiogenesis. Oncogene 21:2000–2008PubMedCrossRefGoogle Scholar
  89. Paramasivam A, Sambantham S, Shabnam J et al (2012) Anti-cancer effects of thymoquinone in mouse neuroblastoma (Neuro-2a) cells through caspase-3 activation with down-regulation of XIAP. Toxicol Lett 213(2):151–159PubMedPubMedCentralCrossRefGoogle Scholar
  90. Quintar AA, Doll A, Leimgruber C et al (2010) Acute inflammation promotes early cellular stimulation of the epithelial and stromal compartments of the rat prostate. Prostate 70:1153–1165PubMedCrossRefGoogle Scholar
  91. Rahman E, Skwarska M, Henry M et al (1999) Systemic and pulmonary oxidative stress in idiopathic pulmonary fibrosis. Free Radic Biol Med 27:60–68PubMedCrossRefGoogle Scholar
  92. Ramsey CP, Tansey MG (2014) A survey from 2012 of evidence for the role of neuroinflammation in neurotoxin animal models of Parkinson’s disease and potential molecular targets. Exp Neurol 256:126–132PubMedCrossRefGoogle Scholar
  93. Rizzo F, Riboldi G, Salani S et al (2014) Cellular therapy to target neuroinflammation in amyotrophic lateral sclerosis. Cell Mol Life Sci 71:999–1015PubMedCrossRefGoogle Scholar
  94. Roberts JA, Roth JK, Domingue G (1982) Immunology of pyelonephritis in the primate model V. Effect of superoxide dismutase. J Urol 128:1394–1400PubMedCrossRefGoogle Scholar
  95. Sacino AN, Brooks M, McKinney AB et al (2014) Brain injection of alphasynuclein induces multiple proteinopathies, gliosis, and a neuronal injury marker. J Neurosci 34:12368–12378PubMedCrossRefGoogle Scholar
  96. Sakurai H, Miyoshi H, Toriumi W et al (1999) Functional interactions of transforming growth factor h-activated kinase 1 with InB kinases to stimulate NF-nB activation. J Biol Chem 274:10641–10648PubMedCrossRefGoogle Scholar
  97. Sastre J, Pallardo FV, Vina J (2000) Mitochondrial oxidative stress plays a key role in aging and apoptosis. IUBMB Life 49:427–435PubMedCrossRefGoogle Scholar
  98. Sayed AA, Morcos M (2007) Thymoquinone decreases AGE-induced NF-nB activation in proximal tubular epithelial cells. Phytother Res 21:898–899PubMedPubMedCentralCrossRefGoogle Scholar
  99. Schaeffer AJ (1999) Prostatitis: US perspective. Int J Antimicrob Agents 11:205–211PubMedCrossRefGoogle Scholar
  100. Schraufstatter I, Hyslop PA, Jackson JH et al (1998) Oxidant-induced DNA damage of target cell. J Clin Investig 82:1040–1050CrossRefGoogle Scholar
  101. Sethi G, Ahn KS, Aggarwal BB (2008) Targeting nuclear factor kappa B activation pathway by thymoquinone: role in suppression of antiapoptotic gene products and enhancement of apoptosis. Mol Cancer Res 6:1059–1070PubMedPubMedCentralCrossRefGoogle Scholar
  102. Shao YY, Li B, Huang YM et al (2017) Thymoquinone attenuates brain injury via an anti-oxidative pathway in a status epilepticus rat model. Transl Neurosci 8:9–14PubMedPubMedCentralCrossRefGoogle Scholar
  103. Sharman A, Chinoy NJ (1998) Role of free radicals in fluoride-induced toxicity in liver and kidney of mice and its reversal. Fluoride 31:S26Google Scholar
  104. Shen HM, Liu ZG (2006) JNK signaling pathway is a key modulator in cell death mediated by reactive oxygen and nitrogen species. Free Radic Biol Med 40:928–939PubMedCrossRefGoogle Scholar
  105. Sherif IO, Al-Gayyar MM (2013) Antioxidant, anti-inflammatory and hepatoprotective effects of silymarin on hepatic dysfunction induced by sodium nitrite. Eur Cytokine Netw 24:114–121PubMedGoogle Scholar
  106. Shishodia S, Aggarwal BB (2004) Nuclear factor-nB activation mediates cellular transformation, proliferation, invasion angiogenesis and metastasis of cancer. Cancer Treat Res 119:139–173PubMedCrossRefGoogle Scholar
  107. Shivers KY, Nikolopoulou A, Machlovi SI et al (2014) PACAP27 prevents Parkinson like neuronal loss and motor deficits but not microglia activation induced by prostaglandin J2. Biochim Biophys Acta 1842:1707–1719PubMedPubMedCentralCrossRefGoogle Scholar
  108. Sinha M, Manna P, Sil PC (2008) Terminalia arjuna protects mouse hearts against sodium fluoride-induced oxidative stress. J Med Food 11:733–740PubMedCrossRefGoogle Scholar
  109. Sikora E, Scapagnini G, Barbagallo M (2010) Curcumin, inflammation, ageing and age-related diseases. Immun Ageing 7:1–4PubMedPubMedCentralCrossRefGoogle Scholar
  110. Skerk V, Krhen I, Schonwald S (2004) The role of unusual pathogens in prostatitis syndrome. Int J Antimicrob Agents 24(Suppl. 1):53s–56sCrossRefGoogle Scholar
  111. Sultan MT, Butt MS, Ahmad RS et al (2012) Supplementation of Nigella sativa fixed and essential oil mediates potassium bromate induced oxidative stress and multiple organ toxicity. Pak J Pharm Sci 25(1):175–181PubMedGoogle Scholar
  112. Taka E, Mazzio EA, Goodman CB et al (2015) Anti-inflammatory effects of thymoquinone in activated BV-2 microglial cells. J Neuroimmunol 286:5–12PubMedPubMedCentralCrossRefGoogle Scholar
  113. Tayman C, Cekmez F, Kafa IM et al (2013) Protective effects of Nigella sativa oil in hyperoxia-induced lung injury. Arch Bronconeumol 49(1):15–21PubMedCrossRefGoogle Scholar
  114. Tekeoglu I, Dogan A, Ediz L et al (2007) Effects of thymoquinone (volatile oil of black cumin) on rheumatoid arthritis in rat models. Phytother Res 21:895–897PubMedCrossRefGoogle Scholar
  115. Terzi A, Coban S, Yildiz F et al (2010) Protective effects of Nigella sativa on intestinal ischemia-reperfusion injury in rats. J Investig Surg 23(1):21–27CrossRefGoogle Scholar
  116. Tsukada T, Nakano T, Miyata T et al (2013) Life threatening gastrointestinal mucosal necrosis during methotrexate treatment for rheumatoid arthritis. Case Rep Gastroenterol 7:4705CrossRefGoogle Scholar
  117. Umar S, Zargan J, Umar K et al (2012) Modulation of the oxidative stress and inflammatory cytokine response by thymoquinone in the collagen induced arthritis in Wistar rats. Chem Biol Interact 197(1):40–46PubMedPubMedCentralCrossRefGoogle Scholar
  118. Valko M, Rhodes CJ, Moncol J et al (2006) Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact 160:1–40PubMedCrossRefGoogle Scholar
  119. Velho-Pereira R, Kumar A, Pandey BN et al (2011) Radiosensitization in human breast carcinoma cells by thymoquinone: role of cell cycle and apoptosis. Cell Biol Int 35(10):1025–1029PubMedCrossRefGoogle Scholar
  120. Wang T, Niu G, Kortylewski M et al (2004) Regulation of the innate and adaptive immune responses by Stat-3 signaling in tumor cells. Nat Med 10:48–54PubMedCrossRefGoogle Scholar
  121. Widemann BC, Adamson PC (2006) Understanding and managing methotrexate nephrotoxicity. Oncologist 11(6):694–703PubMedCrossRefGoogle Scholar
  122. Woo CC, Kumar AP, Sethi G et al (2012) Thymoquinone: potential cure for inflammatory disorders and cancer. Biochem Pharmacol 83:443–451PubMedPubMedCentralCrossRefGoogle Scholar
  123. Xuan NT, Shumilina E, Qadri SM (2010) Effect of thymoquinone on mouse dendritic cells. Cell Phys Biochem 25:307–314CrossRefGoogle Scholar
  124. Yang W, Bhandaru M, Pasham V et al (2012) Effect of thymoquinone on cytosolic pH and Na+/H+ exchanger activity in mouse dendritic cells. Cell Phys Biochem 29:21–30CrossRefGoogle Scholar
  125. Yi T, Cho SG, Yi Z et al (2008) Thymoquinone inhibits tumor angiogenesis and tumor growth through suppressing AKT and extracellular signal-regulated kinase signaling pathways. Mol Cancer Ther 7(7):1789–1796PubMedPubMedCentralCrossRefGoogle Scholar
  126. Yildiz F, Coban S, Terzi A et al (2010) Protective effects of Nigella sativa against ischemia-reperfusion injury of kidneys. Ren Fail 32(1):126–131PubMedCrossRefGoogle Scholar
  127. Yorimitsu M, Muranaka S, Sato EF et al (2004) Role of alpha-tocopherol in the regulation of mitochondrial permeability transition. Physiol Chem Phys Med NMR 36(2):95–107PubMedGoogle Scholar
  128. Yu H, Jove R (2004) The STATs of cancer – new molecular targets come of age. Nat Rev Cancer 4:97–105PubMedCrossRefGoogle Scholar
  129. Yue P, Turkson J (2009) Targeting STAT3 in cancer: how successful are we? Expert Opin Investig Drugs 18:45–56PubMedPubMedCentralCrossRefGoogle Scholar
  130. Zubair H, Khan H, Sohail A et al (2013) Redox cycling of endogenous copper by thymoquinone leads to ROS-mediated DNA breakage and consequent cell death: putative anticancer mechanism of antioxidants. Cell Death Dis 4(6):e660PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.College of Applied Medical SciencesQassim UniversityBuraidahSaudi Arabia

Personalised recommendations