Skip to main content

Antidiabetic Action of Thymoquinone

  • Chapter
  • First Online:
Book cover Molecular and Therapeutic actions of Thymoquinone

Abstract

Diabetes has become the most common metabolic disease worldwide. Hyperglycemia has a key role in the diseases associated with diabetic complications. N. sativa seeds possess antidiabetic and hypoglycemic activity. It is the thymoquinone (TQ) content of these seeds that is the main constituent associated with the antidiabetic activity of the plant. TQ is quite effective in protecting the β-cells from damage due to oxidative stress and decreases hepatic gluconeogenesis. It prevents insulin resistance, protein glycation, and diabetic nephropathy and has many other antidiabetic properties. The antioxidant, cytoprotective and immunomodulating actions of TQ and N. sativa, may be pharmacologically relevant in curing diabetes and its complications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdelmeguid NE, Fakhoury R, Kamal SM et al (2010) Effects of Nigella sativa and thymoquinone on biochemical and subcellular changes in pancreatic β-cells of streptozotocin-induced diabetic rats. J Diabetes 2:256–266

    Article  CAS  Google Scholar 

  • Abel-Salam BK (2012) Immunomodulatory effects of black seeds and garlic on alloxan-induced diabetes in albino rat. Allergol Immunopathol (Madr) 40:336–340

    Article  Google Scholar 

  • Abu Khader MM (2012) Thymoquinone: a promising antidiabetic agent. Int J Diabetes Dev Countries 32:65–68

    Article  CAS  Google Scholar 

  • Al Wafai RJ (2013) Nigella sativa and thymoquinone suppress cyclooxygenase-2 and oxidative stress in pancreatic tissue of streptozotocin-induced diabetic rats. Pancreas 42:841–849

    Article  Google Scholar 

  • Al-Enazi MM (2007) Effect of thymoquinone on malformations and oxidative stress-induced diabetic mice. Pak J Biol Sci 10:3115–3119

    Article  CAS  Google Scholar 

  • Alenzi F, El-Bolkiny Y-S, Salem M (2010) Protective effects of Nigella sativa oil and thymoquinone against toxicity induced by the anti-cancer drug cyclophosphamide. Br J Biomed Sci 67:20–28

    Article  CAS  Google Scholar 

  • Al-Hader A, Aqel M, Hasan Z (1993) Hypoglycemic effects of the volatile oil of Nigella sativa seeds. Pharm Biol 31:96–100

    Article  Google Scholar 

  • Alimohammadi S, Hobbenaghi R, Javanbakht J et al (2013) Protective and anti-diabetic effects of extract from Nigella sativa on blood glucose concentrations against streptozotocin (STZ)-induced diabetic in rats: an experimental study with histopathological evaluation. Diagn Pathol 15:137

    Article  Google Scholar 

  • Al-Trad B, Al-Batayneh K, El-Metwally S et al (2016) Nigella sativa oil and thymoquinone ameliorate albuminuria and renal extracellular matrix accumulation in the experimental diabetic rats. Eur Rev Med Pharmacol Sci 20:2680–2688

    CAS  PubMed  Google Scholar 

  • Anwar S, Khan MA, Sadaf A et al (2014) A structural study on the protection of glycation of superoxide dismutase by thymoquinone. Int J Biol Macromol 69:476–481

    Article  CAS  Google Scholar 

  • Badr G, Mahmoud MH, Farhat K et al (2013) Maternal supplementation of diabetic mice with thymoquinone protects their offspring from abnormal obesity and diabetes by modulating their lipid profile and free radical production and restoring lymphocyte proliferation via PI3K/AKT signaling. Lipids Health Dis 12:37

    Article  CAS  Google Scholar 

  • Bamosa AO, Kaatabi H, Lebda FM et al (2010) Effect of Nigella sativa seeds on the glycemic control of patients with type 2 diabetes mellitus. Indian J Physiol Pharmacol 54:344–354

    PubMed  Google Scholar 

  • Baynes JW, Watkins NG, Fisher CI et al (1989) The Amadori product on protein: structure and reactions. Prog Clin Biol Res 304:43–67

    CAS  PubMed  Google Scholar 

  • Brownlee M (1995) The pathological implications of protein glycation. Clin Invest Med 18:275–281

    CAS  PubMed  Google Scholar 

  • Coman C, Rugină OD, Socaciu C (2012) Plants and natural compounds with antidiabetic action. Not Bot Horti Agrobo 40:314–325

    Article  CAS  Google Scholar 

  • El-Mahmoudy A, Shimizu Y, Shiina T et al (2005a) Successful abrogation by thymoquinone against induction of diabetes mellitus with streptozotocin via nitric oxide inhibitory mechanism. Int Immunopharmacol 5:195–207

    Article  CAS  Google Scholar 

  • El-Mahmoudy A, Shimizu Y, Shiina T et al (2005b) Macrophage-derived cytokine and nitric oxide profiles in type I and type II diabetes mellitus: effect of thymoquinone. Acta Diabetol 42:23–30

    Article  CAS  Google Scholar 

  • Fararh K, Atoji Y, Shimizu Y et al (2002) Isulinotropic properties of Nigella sativa oil in Streptozotocin plus Nicotinamide diabetic hamster. Res Vet Sci 73:279–282

    Article  CAS  Google Scholar 

  • Fararh KM, Ibrahim AK, Elsonosy YA (2010) Thymoquinone enhances the activities of enzymes related to energy metabolism in peripheral leukocytes of diabetic rats. Res Vet Sci 88:400–404

    Article  CAS  Google Scholar 

  • Fararh KM, Shimizu Y, Shiina T et al (2005) Thymoquinone reduces hepatic glucose production in diabetic hamsters. Res Vet Sci 79:219–223

    Article  CAS  Google Scholar 

  • Fouad AA, Alwadani F (2015) Ameliorative effects of thymoquinone against eye lens changes in streptozotocin diabetic rats. Environ Toxicol Pharmacol 40:960–965

    Article  CAS  Google Scholar 

  • Hamdy NM, Taha RA (2009) Effects of Nigella sativa oil and thymoquinone on oxidative stress and neuropathy in streptozotocin-induced diabetic rats. Pharmacology 84:127–134

    Article  CAS  Google Scholar 

  • Hassanien MF, Assiri AM, Alzohairy AM et al (2015) Health-promoting value and food applications of black cumin essential oil: an overview. J Food Sci Technol 52:6136–6142

    Article  CAS  Google Scholar 

  • Hawsawi ZA, Ali BA, Bamosa AO (2001) Effect of Nigella sativa (black seed) and thymoquinone on blood glucose in albino rats. Ann Saudi Med 21:242–244

    Article  CAS  Google Scholar 

  • Kaleem M, Kirmani D, Asif M et al (2006) Biochemical effects of Nigella sativa L seeds in diabetic rats. Indian J Exp Biol 44:745–748

    CAS  PubMed  Google Scholar 

  • Kanter M (2008) Effects of Nigella sativa and its major constituent, thymoquinone on sciatic nerves in experimental diabetic neuropathy. Neurochem Res 33:87–96

    Article  CAS  Google Scholar 

  • Kanter M (2009) Protective effects of thymoquinone on streptozotocin-induced diabetic nephropathy. J Mol Histol 40:107–115

    Article  CAS  Google Scholar 

  • Kanter M, Akpolat M, Aktas C (2009) Protective effects of the volatile oil of Nigella sativa seeds on β-cell damage in streptozotocin-induced diabetic rats: a light and electron microscopic study. J Molecular Histol 40:379–385

    Article  CAS  Google Scholar 

  • Kanter M, Coskun O, Korkmaz A et al (2004) Effects of Nigella sativa on oxidative stress and β-cell damage in streptozotocin-induced diabetic rats. Anat Rec A Discov Mol Cell Evol Biol 279:685–691

    Article  Google Scholar 

  • Khan MA, Anwar S, Aljarbou AN et al (2014) Protective effect of thymoquinone on glucose or methylglyoxal-induced glycation of superoxide dismutase. Int J Biol Macromol 65:16–20

    Article  CAS  Google Scholar 

  • Kitabchi AE, Umpierrez GE, Miles JM et al (2009) Hyperglycemic crises in adult patients with diabetes. Diabetes Care 32:1335–1343

    Article  CAS  Google Scholar 

  • Liu H, Liu HY, Jiang YN et al (2016) Protective effect of thymoquinone improves cardiovascular function, and attenuates oxidative stress, inflammation and apoptosis by mediating the PI3K/Akt pathway in diabetic rats. Mol Med Rep 13:2836–2842

    Article  CAS  Google Scholar 

  • Losso JN, Bawadi HA, Chintalapati M (2011) Inhibition of the formation of advanced glycation end products by thymoquinone. Food Chem 128:55–61

    Article  CAS  Google Scholar 

  • Marles RJ, Farnsworth NR (1995) Antidiabetic plants and their active constituents. Phytomedicine 2:137–189

    Article  CAS  Google Scholar 

  • Neglia CI, Cohen HJ, Garber AR et al (1983) NMR investigation of nonenzymatic glucosylation of protein. Model studies using RNase A. J Biol Chem 258:14279–14283

    CAS  PubMed  Google Scholar 

  • Pari L, Sankaranarayanan C (2009) Beneficial effects of thymoquinone on hepatic key enzymes in streptozotocin–nicotinamide induced diabetic rats. Life Sci 85:830–834

    Article  CAS  Google Scholar 

  • Pei X, Li X, Chen H et al (2016) Thymoquinone inhibits angiotensin II-induced proliferation and migration of vascular smooth muscle cells through the AMPK/PPARγ/PGC-1α pathway. DNA Cell Biol 35:426–433

    Article  CAS  Google Scholar 

  • Prabhakar P, Reeta KH, Maulik SK et al (2015) Protective effect of thymoquinone against high-fructose diet-induced metabolic syndrome in rats. Eur J Nutr 54:1117–1127

    Article  CAS  Google Scholar 

  • Rchid H, Chevassus H, Nmila R et al (2004) Nigella sativa seed extracts enhance glucose-induced insulin release from rat-isolated Langerhans islets. Fundam Clin Pharmacol 18:525–529

    Article  CAS  Google Scholar 

  • Riddle MC (2005) Glycemic management of type 2 diabetes: an emerging strategy with oral agents, insulins, and combinations. Endocrinol Metab Clin N Am 34:77–98

    Article  CAS  Google Scholar 

  • Salama RH (2011) Hypoglycemic effect of lipoic acid, carnitine and Nigella sativa in diabetic rat model. Int J Health Sci 5:126–134

    CAS  Google Scholar 

  • Sangi SMA, Sulaiman MI, Abd El-wahab MF et al (2015) Antihyperglycemic effect of thymoquinone and oleuropein, on streptozotocin-induced diabetes mellitus in experimental animals. Pharmacogn Mag 11:S251–S257

    Article  Google Scholar 

  • Sankaranarayanan C, Pari L (2011) Thymoquinone ameliorates chemical induced oxidative stress and β-cell damage in experimental hyperglycemic rats. Chem Biol Interact 190(2–3):148–154

    Article  CAS  Google Scholar 

  • Sayed AA (2012) Thymoquinone and proanthocyanidin attenuation of diabetic nephropathy in rats. Eur Rev Med Pharmacol Sci 16:808–815

    CAS  PubMed  Google Scholar 

  • Sayed AA, Morcos M (2007) Thymoquinone decreases AGE-induced NF-kappaB activation in proximal tubular epithelial cells. Phytother Res 21:898–899

    Article  CAS  Google Scholar 

  • Seven A, Guzel S, Seymen O et al (2003) Nitric oxide synthase inhibition by L-NAME in streptozotocin-induced diabetic rats: impacts on oxidative stress. Tohoku J Exp Med 99:205–210

    Article  Google Scholar 

  • Shabana A, El-Menyar A, Asim M et al (2013) Cardiovascular benefits of black cumin (Nigella sativa). Cardiovascular Toxicol 13:9–21

    Article  Google Scholar 

  • Shafiq H, Ahmad A, Masud T et al (2014) Cardio-protective and anti-cancer therapeutic potential of Nigella sativa. Iran J Basic Med Sci 17:967–979

    PubMed  PubMed Central  Google Scholar 

  • Sobhi W, Stevigny C, Duez P et al (2016) Effect of lipid extracts of Nigella sativa L. seeds on the liver ATP reduction and alpha-glucosidase inhibition. Pak J Pharm Sci 29:111–117

    CAS  PubMed  Google Scholar 

  • Soumyanath A (2006) Traditional medicines in modern times-anti-diabetic plants. CRC Press, Boca Raton/London/New York

    Google Scholar 

  • Stadler K (2012) Oxidative stress in diabetes. Adv Exp Med Biol 771:272–287

    PubMed  Google Scholar 

  • Sultan MT, Butt MS, Karim R et al (2014) Effect of Nigella sativa fixed and essential oils on antioxidant status, hepatic enzymes, and immunity in streptozotocin induced diabetes, mellitus. BMC Complement Altern Med 14:193

    Article  Google Scholar 

  • Thornalley PJ, Langborg A, Minhas HS (1999) Formation of glyoxal, methylglyoxal and 3-deoxyglucosone in the glycation of proteins by glucose. Biochem J 344:109–116

    Article  CAS  Google Scholar 

  • Younus H, Anwar S (2016) Prevention of non-enzymatic glycosylation (glycation): implication in the treatment of diabetic complication. Int J Health Sci 10:261–277

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hina Younus .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Younus, H. (2018). Antidiabetic Action of Thymoquinone. In: Younus, H. (eds) Molecular and Therapeutic actions of Thymoquinone. Springer, Singapore. https://doi.org/10.1007/978-981-10-8800-1_2

Download citation

Publish with us

Policies and ethics