Skip to main content

Biostatistics, Data Mining and Computational Modeling

  • Chapter
  • First Online:
Genomic Approach to Asthma

Part of the book series: Translational Bioinformatics ((TRBIO,volume 12))

  • 653 Accesses

Abstract

In this chapter, biostatistics data mining methods applied in Asthma will be introduced into four frameworks: descriptive and explorative statistics, supervised data mining, unsupervised data mining, and time series analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen K, et al. The effects of air pollution on asthma hospital admissions in Adelaide, South Australia, 2003–2013: time-series and casecrossover analyses. Clin Exp Allergy. 2016;46(11):1416–30. [Pubmed:27513706]

    Google Scholar 

  2. Li S, et al. Association of daily asthma emergency department visits and hospital admissions with ambient air pollutants among the pediatric Medicaid population in Detroit: time-series and time-stratified case-crossover analyses with threshold effects. Environ Res. 2011;111(8):1137–47. [Pubmed:21764049]

    Google Scholar 

  3. Michell TM. Machine learning. New York: McGraw-Hill; 1997. [ISBN: 9780070428072]

    Google Scholar 

  4. Cortes C, Vapnik V. Support-vector networks. Mach Learn. 1995;20(3):273–93. https://link.springer.com/content/pdf/10.1007%2FBF00994018.pdf

  5. Metting, E.I., et al., Development of a diagnostic decision tree for obstructive pulmonary diseases based on real-life data. ERJ Open Res, 2016;2(1). [Pubmed: 5005160]

    Google Scholar 

  6. Zhang J, et al. Identifying ion channel genes related to cardiomyopathy using a novel decision forest strategy. Mol Biosyst. 2014;10(9):2407–14. [Pubmed: 24977958]

    Google Scholar 

  7. G, R. CHAID and earlier supervised tree methods. 2010. www.unige.ch/ses/metri/cahiers/2010_02.pdf

  8. Williams Checkley MPD, Klawitter J, Romero KM, et al. Identifying biomarkers for asthma diagnosis using targeted metabolomics approaches. Respir Med. 2017;121:59–66. [Pubmed:27888993]

    Google Scholar 

  9. Pennington AF, et al. Exposure to mobile source air pollution in early life and childhood asthma incidence: the Kaiser Air Pollution and Pediatric Asthma Study. Epidemiology. 2017;29(1):22–30. [Pubmed:28926373]

    Google Scholar 

  10. Tan P, Introduction to data mining. Addison-Wesley Comanin Book Site 2006. http://www-users.cs.umn.edu/~kumar/dmbook/index.php. [ISBN:978-0321321367]

  11. Rokach L, Maimon O. “Clustering methods.” Data mining and knowledge discovery handbook. Springer US, 2005. p. 321–352. [ISBN:978-0-387-25465-4]

    Google Scholar 

  12. Hartigan JA, Wong MA, Algorithm AS. 136: a K-means clustering algorithm. J R Stat Soc: Ser C Appl Stat. 1979;28(1):100–8. [ISBN:978-0-387-25465-4]

    Google Scholar 

  13. Kohonen T, Honkela T. Kohonen network. Scholarpedia, 2007

    Google Scholar 

  14. Ciampi A, Lechevallier Y. Clustering large, multi-level data sets: an approach based on Kohonen self organizing maps, in D.A. Zighed Springer LNCS (LNAI), 2000;1910:353–8.[ISBN:0302-9743]

    Google Scholar 

  15. Dunn JC. A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters. J Cybern. 1973;3(3)(0022–0280): 32–57. https://doi.org/10.1080/01969727308546046

  16. Bezdek JC. Pattern recognition with fuzzy objective function algorithms. New York: Plenum Press; 1981. (0-306-40671-3). [ISBN:978-1-4757-0450-1]

    Google Scholar 

  17. Hirai K, et al. A clustering approach to identify and characterize the asthma and chronic obstructive pulmonary disease overlap phenotype. Clin Exp Allergy. 2017;47(11):1374–82. [Pubmed:28658564]

    Google Scholar 

  18. Toti G, et al. Analysis of correlation between pediatric asthma exacerbation and exposure to pollutant mixtures with association rule mining. Artif Intell Med. 2016;74:44–52. [Pubmed:27964802]

    Google Scholar 

  19. Imdadullah, “Time Series Analysis”. Basic Statistics and Data Analysis. itfeature.com, 2014

    Google Scholar 

  20. Osborne NJ, et al. Pollen exposure and hospitalization due to asthma exacerbations: daily time series in a European city. Int J Biometeorol. 2017;61(10):1837–48. [Pubmed:28500390]

    Google Scholar 

  21. Brown K, et al. Improving timeliness for acute asthma care for paediatric ED patients using a nurse driven intervention: an interrupted time series analysis. BMJ Qual Improv Rep. 2016;5(1.) [Pubmed: 5223673]

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, J. (2018). Biostatistics, Data Mining and Computational Modeling. In: Wang, X., Chen, Z. (eds) Genomic Approach to Asthma. Translational Bioinformatics, vol 12. Springer, Singapore. https://doi.org/10.1007/978-981-10-8764-6_15

Download citation

Publish with us

Policies and ethics