Skip to main content

HAT-HDAC System in Asthma

  • Chapter
  • First Online:
Genomic Approach to Asthma

Part of the book series: Translational Bioinformatics ((TRBIO,volume 12))

  • 678 Accesses

Abstract

Diverse biological processes, including regulation of inflammatory gene expression, DNA damage repair, and cell growth, are balanced by modifications on histones such as acetylation (HAT) and deacetylation (HDAC). HAT/HDAC has recently emerged as a critical regulator of inflammatory disease.

HATs are enzymes that specifically add an acetyl group to the lysine amino acids within a conserved motif on histone proteins resulting in loosening the DNA from histones, and driving inflammatory gene expression. HDACs, grouped in four classes, suppress the inflammatory gene expression by reversing the reaction catalyzed by HATs.

The chapter is focusing on the potential asthma-relief effects of HAT and/or HDAC compounds. Recently, more specific HAT inhibitors (HATi) and HDAC inhibitors (HDACi) have been described. This can now serve as perfect tools to study the function of HATs and HDACs in model systems of asthma. Oral or inhaled corticosteroids are widely used as maintenance therapy for asthmatics. However, its disease control effect is diminished in asthma smokers and severe asthma patients. Reduced responsiveness to the anti-inflammatory effects of corticosteroids is a major barrier to effective management of asthma in smokers and patients with severe asthma. Reduced expression of HDAC2 may be involved in the molecular mechanism of corticosteroid insensitivity in asthmatics. We further investigate how HDAC2 play a role in glucocorticoid (GC) insensitivity in asthmatics and find it is a potential target to reverse GC activity.

Although the precise mechanisms of HAT/HDAC are still controversial, their roles as potential drug targets for asthma have been represented. It should also be noted the existence of multiple subtypes of HDAC/HAT adds to the complexity of their biological effect in asthma. This remains a hot area in today’s asthma research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bousquet J, Jeffery PK, Busse WW, Johnson M, Vignola AM. Asthma. From bronchoconstriction to airways inflammation and remodeling. Am J Respir Crit Care Med. 2000;161:1720–45. [PMID:10806180]

    Article  PubMed  CAS  Google Scholar 

  2. Masoli M, Fabian D, Holt S, Beasley R, Global Initiative for Asthma P. The global burden of asthma: executive summary of the GINA Dissemination Committee report. Allergy. 2004;59:469–78. [PMID:15080825]

    Article  PubMed  Google Scholar 

  3. Barnes PJ, Adcock IM. How do corticosteroids work in asthma? Ann Intern Med. 2003;139:359–70. [PMID:12965945]

    Article  PubMed  CAS  Google Scholar 

  4. Chung KF, Godard P, Adelroth E, Ayres J, Barnes N, Barnes P, Bel E, Burney P, Chanez P, Connett G, Corrigan C, De Blic J, Fabbri L, Holgate ST, Ind P, Joos G, Kerstjens H, Leuenberger P, Lofdahl CG, Mckenzie S, Magnussen H, Postma D, Saetta M, Salmeron S, Sterk P. Difficult therapy-resistant asthma: the need for an integrated approach to define clinical phenotypes, evaluate risk factors, understand pathophysiology and find novel therapies. ERS Task Force on Difficult/Therapy-Resistant Asthma. European Respiratory Society. Eur Respir J. 1999;13:1198–208. [PMID:10414427]

    PubMed  CAS  Google Scholar 

  5. Wang W, Li JJ, Foster PS, Hansbro PM, Yang M. Potential therapeutic targets for steroid-resistant asthma. Curr Drug Targets. 2010;11:957–70. [PMID:20412045]

    Article  PubMed  CAS  Google Scholar 

  6. Clearie KL, Mckinlay L, Williamson PA, Lipworth BJ. Fluticasone/Salmeterol combination confers benefits in people with asthma who smoke. Chest. 2012;141:330–8. [PMID:21636667]

    Article  PubMed  CAS  Google Scholar 

  7. Bhavsar P, Hew M, Khorasani N, Torrego A, Barnes PJ, Adcock I, Chung KF. Relative corticosteroid insensitivity of alveolar macrophages in severe asthma compared with non-severe asthma. Thorax. 2008;63:784–90. [PMID:18492738]

    Article  PubMed  CAS  Google Scholar 

  8. Chang PJ, Bhavsar PK, Michaeloudes C, Khorasani N, Chung KF. Corticosteroid insensitivity of chemokine expression in airway smooth muscle of patients with severe asthma. J Allergy Clin Immunol. 2012;130:877–85 e5. PMID:22947346

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Thomsen SF, Van Der Sluis S, Kyvik KO, Skytthe A, Backer V. Estimates of asthma heritability in a large twin sample. Clin Exp Allergy. 2010;40:1054–61. [PMID:20528882]

    Article  PubMed  CAS  Google Scholar 

  10. Mcgeachie MJ, Stahl EA, Himes BE, Pendergrass SA, Lima JJ, Irvin CG, Peters SP, Ritchie MD, Plenge RM, Tantisira KG. Polygenic heritability estimates in pharmacogenetics: focus on asthma and related phenotypes. Pharmacogenet Genomics. 2013;23:324–8. [PMID:23532052]

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Durham AL, Wiegman C, Adcock IM. Epigenetics of asthma. Biochim Biophys Acta. 1810;2011:1103–9. [PMID:21397662]

    Google Scholar 

  12. Barlesi F, Giaccone G, Gallegos-Ruiz MI, Loundou A, Span SW, Lefesvre P, Kruyt FA, Rodriguez JA. Global histone modifications predict prognosis of resected non small-cell lung cancer. J Clin Oncol. 2007;25:4358–64. [PMID:17906200]

    Article  PubMed  Google Scholar 

  13. Barnes PJ. Targeting the epigenome in the treatment of asthma and chronic obstructive pulmonary disease. Proc Am Thorac Soc. 2009;6:693–6. [PMID:20008877]

    Article  PubMed  CAS  Google Scholar 

  14. Schwartz DA. Epigenitics and environmental lung disease. Proc Am Thorac Soc. 2010;7:123–5. [PMID:20427583]

    Article  PubMed  Google Scholar 

  15. Littau VC, Burdick CJ, Allfrey VG, Mirsky SA. The role of histones in the maintenance of chromatin structure. Proc Natl Acad Sci U S A. 1965;54:1204–12. [PMID:5219825]

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Ogryzko VV, Schiltz RL, Russanova V, Howard BH, Nakatani Y. The transcriptional coactivators p300 and CBP are histone acetyltransferases. Cell. 1996;87:953–9. [PMID:8945521]

    Article  PubMed  CAS  Google Scholar 

  17. Roth SY, Denu JM, Allis CD. Histone acetyltransferases. Annu Rev Biochem. 2001;70:81–120. [PMID:11395403]

    Article  PubMed  CAS  Google Scholar 

  18. Gao L, Cueto MA, Asselbergs F, Atadja P. Cloning and functional characterization of HDAC11, a novel member of the human histone deacetylase family. J Biol Chem. 2002;277:25748–55. [PMID:11948178]

    Article  PubMed  CAS  Google Scholar 

  19. Roth SY, Allis CD. Histone acetylation and chromatin assembly: a single escort, multiple dances? Cell. 1996;87:5–8. [PMID:8858142]

    Article  PubMed  CAS  Google Scholar 

  20. Jenuwein T, Allis CD. Translating the histone code. Science. 2001;293:1074–80. [PMID:11498575]

    Article  PubMed  CAS  Google Scholar 

  21. Bolden JE, Peart MJ, Johnstone RW. Anticancer activities of histone deacetylase inhibitors. Nat Rev Drug Discov. 2006;5:769–84. [PMID:16955068]

    Article  PubMed  CAS  Google Scholar 

  22. Hassig CA, Schreiber SL. Nuclear histone acetylases and deacetylases and transcriptional regulation: HATs off to HDACs. Curr Opin Chem Biol. 1997;1:300–8. [PMID:9667866]

    Article  PubMed  CAS  Google Scholar 

  23. Wang Z, Zang C, Cui K, Schones DE, Barski A, Peng W, Zhao K. Genome-wide mapping of HATs and HDACs reveals distinct functions in active and inactive genes. Cell. 2009;138:1019–31. [PMID:19698979]

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Leipe DD, Landsman D. Histone deacetylases, acetoin utilization proteins and acetylpolyamine amidohydrolases are members of an ancient protein superfamily. Nucleic Acids Res. 1997;25:3693–7. [PMID:9278492]

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Dokmanovic M, Clarke C, Marks PA. Histone deacetylase inhibitors: overview and perspectives. Mol Cancer Res. 2007;5:981–9. [PMID:17951399]

    Article  PubMed  CAS  Google Scholar 

  26. De Ruijter AJ, Van Gennip AH, Caron HN, Kemp S, Van Kuilenburg AB. Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem J. 2003;370:737–49. [PMID:12429021]

    Article  PubMed  PubMed Central  Google Scholar 

  27. Taunton J, Hassig CA, Schreiber SL. A mammalian histone deacetylase related to the yeast transcriptional regulator Rpd3p. Science. 1996;272:408–11. [PMID:8602529]

    Article  PubMed  CAS  Google Scholar 

  28. Takami Y, Nakayama T. N-terminal region, C-terminal region, nuclear export signal, and deacetylation activity of histone deacetylase-3 are essential for the viability of the DT40 chicken B cell line. J Biol Chem. 2000;275:16191–201. [PMID:10748092]

    Article  PubMed  CAS  Google Scholar 

  29. Yang WM, Tsai SC, Wen YD, Fejer G, Seto E. Functional domains of histone deacetylase-3. J Biol Chem. 2002;277:9447–54. [PMID:11779848]

    Article  PubMed  CAS  Google Scholar 

  30. Gao Z, He Q, Peng B, Chiao PJ, Ye J. Regulation of nuclear translocation of HDAC3 by IkappaBalpha is required for tumor necrosis factor inhibition of peroxisome proliferator-activated receptor gamma function. J Biol Chem. 2006;281:4540–7. [PMID:16371367]

    Article  PubMed  Google Scholar 

  31. Fischle W, Emiliani S, Hendzel MJ, Nagase T, Nomura N, Voelter W, Verdin E. A new family of human histone deacetylases related to Saccharomyces cerevisiae HDA1p. J Biol Chem. 1999;274:11713–20. [PMID:10206986]

    Article  PubMed  CAS  Google Scholar 

  32. Fischle W, Dequiedt F, Fillion M, Hendzel MJ, Voelter W, Verdin E. Human HDAC7 histone deacetylase activity is associated with HDAC3 in vivo. J Biol Chem. 2001;276:35826–35. [PMID:11466315]

    Article  PubMed  CAS  Google Scholar 

  33. Kao HY, Downes M, Ordentlich P, Evans RM. Isolation of a novel histone deacetylase reveals that class I and class II deacetylases promote SMRT-mediated repression. Genes Dev. 2000;14:55–66. [PMID:10640276]

    PubMed  PubMed Central  CAS  Google Scholar 

  34. Witt O, Deubzer HE, Milde T, Oehme I. HDAC family: what are the cancer relevant targets? Cancer Lett. 2009;277:8–21. [PMID:18824292]

    Article  PubMed  CAS  Google Scholar 

  35. Haigis MC, Guarente LP. Mammalian sirtuins--emerging roles in physiology, aging, and calorie restriction. Genes Dev. 2006;20(21):2913. [PMID:17079682]

    Article  PubMed  CAS  Google Scholar 

  36. Barneda-Zahonero B, Parra M. Histone deacetylases and cancer. Mol Oncol. 2012;6:579–89. [PMID:22963873]

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Sauve AA, Wolberger C, Schramm VL, Boeke JD. The biochemistry of sirtuins. Annu Rev Biochem. 2006;75:435–65. [PMID:16756498]

    Article  PubMed  CAS  Google Scholar 

  38. Finkel T, Deng CX, Mostoslavsky R. Recent progress in the biology and physiology of sirtuins. Nature. 2009;460:587–91. [PMID:19641587]

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Yuan Z, Zhang X, Sengupta N, Lane WS, Seto E. SIRT1 regulates the function of the Nijmegen breakage syndrome protein. Mol Cell. 2007;27:149–62. [PMID:17612497]

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Nemoto S, Fergusson MM, Finkel T. SIRT1 functionally interacts with the metabolic regulator and transcriptional coactivator PGC-1{alpha}. J Biol Chem. 2005;280:16456–60. [PMID:15716268]

    Article  PubMed  Google Scholar 

  41. Rodgers JT, Lerin C, Haas W, Gygi SP, Spiegelman BM, Puigserver P. Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature. 2005;434:113–8. [PMID:15744310]

    Article  PubMed  CAS  Google Scholar 

  42. Brunet A, Sweeney LB, Sturgill JF, Chua KF, Greer PL, Lin Y, Tran H, Ross SE, Mostoslavsky R, Cohen HY, Hu LS, Cheng HL, Jedrychowski MP, Gygi SP, Sinclair DA, Alt FW, Greenberg ME. Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science. 2004;303:2011–5. [PMID:14976264]

    Article  PubMed  CAS  Google Scholar 

  43. Motta MC, Divecha N, Lemieux M, Kamel C, Chen D, Gu W, Bultsma Y, Mcburney M, Guarente L. Mammalian SIRT1 represses forkhead transcription factors. Cell. 2004;116:551–63. [PMID:14980222]

    Article  PubMed  CAS  Google Scholar 

  44. Yang XJ, Seto E. The Rpd3/Hda1 family of lysine deacetylases: from bacteria and yeast to mice and men. Nat Rev Mol Cell Biol. 2008;9:206–18. [PMID:18292778]

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Nagy Z, Tora L. Distinct GCN5/PCAF-containing complexes function as co-activators and are involved in transcription factor and global histone acetylation. Oncogene. 2007;26:5341–57. [PMID:17694077]

    Article  PubMed  CAS  Google Scholar 

  46. Hodawadekar SC, Marmorstein R. Chemistry of acetyl transfer by histone modifying enzymes: structure, mechanism and implications for effector design. Oncogene. 2007;26:5528–40. [PMID:17694092]

    Article  PubMed  CAS  Google Scholar 

  47. Marmorstein R, Trievel RC. Histone modifying enzymes: structures, mechanisms, and specificities. Biochim Biophys Acta. 2009;1789:58–68. [PMID:18722564]

    Article  PubMed  CAS  Google Scholar 

  48. Yang XJ, Seto EHAT. HDACs: from structure, function and regulation to novel strategies for therapy and prevention. Oncogene. 2007;26:5310–8. [PMID:17694074]

    Article  PubMed  CAS  Google Scholar 

  49. Marmorstein R. Structure of histone acetyltransferases. J Mol Biol. 2001;311:433–44. [PMID:11492997]

    Article  PubMed  CAS  Google Scholar 

  50. Schiltz RL, Mizzen CA, Vassilev A, Cook RG, Allis CD, Nakatani Y. Overlapping but distinct patterns of histone acetylation by the human coactivators p300 and PCAF within nucleosomal substrates. J Biol Chem. 1999;274:1189–92. [PMID:9880483]

    Article  PubMed  CAS  Google Scholar 

  51. Verdone L, Agricola E, Caserta M, Di Mauro E. Histone acetylation in gene regulation. Brief Funct Genomic Proteomic. 2006;5:209–21. [PMID:16877467]

    Article  PubMed  CAS  Google Scholar 

  52. Torok MS, Grant PA. Histone acetyltransferase proteins contribute to transcriptional processes at multiple levels. Adv Protein Chem. 2004;67:181–99. [PMID:14969728]

    Article  PubMed  CAS  Google Scholar 

  53. Kuo MH, Allis CD. Roles of histone acetyltransferases and deacetylases in gene regulation. BioEssays. 1998;20:615–26. [PMID:9780836]

    Article  PubMed  CAS  Google Scholar 

  54. Avvakumov N, Cote J. The MYST family of histone acetyltransferases and their intimate links to cancer. Oncogene. 2007;26:5395–407. [PMID:17694081]

    Article  PubMed  CAS  Google Scholar 

  55. Ito K, Caramori G, Lim S, Oates T, Chung KF, Barnes PJ, Adcock IM. Expression and activity of histone deacetylases in human asthmatic airways. Am J Respir Crit Care Med. 2002;166:392–6. [PMID:12153977]

    Article  PubMed  Google Scholar 

  56. Britt RD Jr, Thompson MA, Freeman MR, Stewart AL, Pabelick CM, Prakash YS, Vitamin D. Vitamin D reduces inflammation-induced contractility and remodeling of asthmatic human airway smooth muscle. Ann Am Thor Soc. 2016;13(Suppl 1):S97–8. [PMID:27027966]

    Google Scholar 

  57. Grausenburger R, Bilic I, Boucheron N, Zupkovitz G, El-Housseiny L, Tschismarov R, Zhang Y, Rembold M, Gaisberger M, Hartl A, Epstein MM, Matthias P, Seiser C, Ellmeier W. Conditional deletion of histone deacetylase 1 in T cells leads to enhanced airway inflammation and increased Th2 cytokine production. J Immunol. 2010;185:3489–97. [PMID:20702731]

    Article  PubMed  CAS  Google Scholar 

  58. Cosio BG, Mann B, Ito K, Jazrawi E, Barnes PJ, Chung KF, Adcock IM. Histone acetylase and deacetylase activity in alveolar macrophages and blood mononocytes in asthma. Am J Respir Crit Care Med. 2004;170:141–7. [PMID:15087294]

    Article  PubMed  Google Scholar 

  59. Wawrzyniak P, Wawrzyniak M, Wanke K, Sokolowska M, Bendelja K, Ruckert B, Globinska A, Jakiela B, Kast JI, Idzko M, Akdis M, Sanak M, Akdis CA. Regulation of bronchial epithelial barrier integrity by type 2 cytokines and histone deacetylases in asthmatic patients. J Allergy Clin Immunol. 2017;139:93–103. [PMID:27312821]

    Article  PubMed  CAS  Google Scholar 

  60. Bhavsar P, Ahmad T, Adcock IM. The role of histone deacetylases in asthma and allergic diseases. J Allergy Clin Immunol. 2008;121:580–4. [PMID:18234319]

    Article  PubMed  CAS  Google Scholar 

  61. Ito K, Charron CE, Adcock IM. Impact of protein acetylation in inflammatory lung diseases. Pharmacol Ther. 2007;116:249–65. [PMID:17720252]

    Article  PubMed  CAS  Google Scholar 

  62. Adcock IM, Ito K, Barnes PJ. Histone deacetylation: an important mechanism in inflammatory lung diseases. COPD. 2005;2:445–55. [PMID:17147010]

    Article  PubMed  Google Scholar 

  63. Adcock IM, Tsaprouni L, Bhavsar P, Ito K. Epigenetic regulation of airway inflammation. Curr Opin Immunol. 2007;19:694–700. [PMID:17720468]

    Article  PubMed  CAS  Google Scholar 

  64. Barnes PJ. Histone deacetylase-2 and airway disease. Ther Adv Respir Dis. 2009;3:235–43. [PMID:19812111]

    Article  PubMed  Google Scholar 

  65. Barnes PJ, Adcock IM, Ito K. Histone acetylation and deacetylation: importance in inflammatory lung diseases. Eur Respir J. 2005;25:552–63. [PMID:15738302]

    Article  PubMed  CAS  Google Scholar 

  66. Hew M, Bhavsar P, Torrego A, Meah S, Khorasani N, Barnes PJ, Adcock I, Chung KF. Relative corticosteroid insensitivity of peripheral blood mononuclear cells in severe asthma. Am J Respir Crit Care Med. 2006;174:134–41. [PMID:16614347]

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Butler CA, Mcquaid S, Taggart CC, Weldon S, Carter R, Skibinski G, Warke TJ, Choy DF, Mcgarvey LP, Bradding P, Arron JR, Heaney LG. Glucocorticoid receptor beta and histone deacetylase 1 and 2 expression in the airways of severe asthma. Thorax. 2012;67:392–8. [PMID:22156779]

    Article  PubMed  Google Scholar 

  68. Barnes PJ. Immunology of asthma and chronic obstructive pulmonary disease. Nat Rev Immunol. 2008;8:183–92. [PMID:18274560]

    Article  PubMed  CAS  Google Scholar 

  69. Barnes PJ. How corticosteroids control inflammation: Quintiles Prize Lecture 2005. Br J Pharmacol. 2006;148:245–54. [PMID:16604091]

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Winkler AR, Nocka KN, Williams CM. Smoke exposure of human macrophages reduces HDAC3 activity, resulting in enhanced inflammatory cytokine production. Pulm Pharmacol Ther. 2012;25:286–92. [PMID:22613758]

    Article  PubMed  CAS  Google Scholar 

  71. Ferraro M, Gjomarkaj M, Siena L, Di Vincenzo S, Pace E. Formoterol and fluticasone propionate combination improves histone deacetylation and anti-inflammatory activities in bronchial epithelial cells exposed to cigarette smoke. Biochim Biophys Acta. 1863;2017:1718–27. [PMID:28483577]

    Google Scholar 

  72. Royce SG, Dang W, Yuan G, Tran J, El-Osta A, Karagiannis TC, Tang ML. Effects of the histone deacetylase inhibitor, trichostatin A, in a chronic allergic airways disease model in mice. Arch Immunol Ther Exp. 2012;60:295–306. [PMID:22684086]

    Article  CAS  Google Scholar 

  73. Balasubramanian S, Ramos J, Luo W, Sirisawad M, Verner E, Buggy JJ. A novel histone deacetylase 8 (HDAC8)-specific inhibitor PCI-34051 induces apoptosis in T-cell lymphomas. Leukemia. 2008;22:1026–34. [PMID:18256683]

    Article  PubMed  CAS  Google Scholar 

  74. Ren Y, Su X, Kong L, Li M, Zhao X, Yu N, Kang J. Therapeutic effects of histone deacetylase inhibitors in a murine asthma model. Inflamm Res. 2016;65:995–1008. [PMID:27565183]

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Zhang HP, Wang L, Fu JJ, Fan T, Wang ZL, Wang G. Association between histone hyperacetylation status in memory T lymphocytes and allergen-induced eosinophilic airway inflammation. Respirology. 2016;21:850–7. [PMID:26991676]

    Article  PubMed  Google Scholar 

  76. Hou XX, Shi GC, Wan HY, Ai XY, Shi YH, Ni YM, Tang W. [Characteristics of histone deacetylase 9 in peripheral blood of patients with bronchial asthma]. Zhonghua Jie He He Hu Xi Za Zhi. 2012;35:340–4. [PMID:22883992]

    Google Scholar 

  77. Hou X, Wan H, Ai X, Shi Y, Ni Y, Tang W, Shi G. Histone deacetylase inhibitor regulates the balance of Th17/Treg in allergic asthma. Clin Respir J. 2016;10:371–9. [PMID:25307458]

    Article  PubMed  CAS  Google Scholar 

  78. Thorburn AN, Mckenzie CI, Shen S, Stanley D, Macia L, Mason LJ, Roberts LK, Wong CH, Shim R, Robert R, Chevalier N, Tan JK, Marino E, Moore RJ, Wong L, Mcconville MJ, Tull DL, Wood LG, Murphy VE, Mattes J, Gibson PG, Mackay CR. Evidence that asthma is a developmental origin disease influenced by maternal diet and bacterial metabolites. Nat Commun. 2015;6:7320. [PMID:26102221]

    Article  PubMed  CAS  Google Scholar 

  79. Tao R, De Zoeten EF, Ozkaynak E, Chen C, Wang L, Porrett PM, Li B, Turka LA, Olson EN, Greene MI, Wells AD, Hancock WW. Deacetylase inhibition promotes the generation and function of regulatory T cells. Nat Med. 2007;13:1299–307. [PMID:17922010]

    Article  PubMed  CAS  Google Scholar 

  80. Kearley J, Barker JE, Robinson DS, Lloyd CM. Resolution of airway inflammation and hyperreactivity after in vivo transfer of CD4+CD25+ regulatory T cells is interleukin 10 dependent. J Exp Med. 2005;202:1539–47. [PMID:16314435]

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Dali-Youcef N, Lagouge M, Froelich S, Koehl C, Schoonjans K, Auwerx J. Sirtuins: the 'magnificent seven', function, metabolism and longevity. Ann Med. 2007;39:335–45. [PMID:17701476]

    Article  PubMed  CAS  Google Scholar 

  82. Michan S, Sinclair D. Sirtuins in mammals: insights into their biological function. Biochem J. 2007;404:1–13. [PMID:17447894]

    Article  PubMed  CAS  Google Scholar 

  83. Wang Y, Li D, Ma G, Li W, Wu J, Lai T, Huang D, Zhao X, Lv Q, Chen M, Wu B. Increases in peripheral SIRT1: a new biological characteristic of asthma. Respirology. 2015;20:1066–72. [PMID:26040995]

    Article  PubMed  Google Scholar 

  84. Kim SR, Lee KS, Park SJ, Min KH, Choe YH, Moon H, Yoo WH, Chae HJ, Han MK, Lee YC. Involvement of sirtuin 1 in airway inflammation and hyperresponsiveness of allergic airway disease. J Allergy Clin Immunol. 2010;125:449–60 e14. [PMID:19864008]

    Article  PubMed  CAS  Google Scholar 

  85. Chen G, Tang J, Ni Z, Chen Q, Li Z, Yang W, Din J, Luo X, Wang X. Antiasthmatic effects of resveratrol in ovalbumin-induced asthma model mice involved in the upregulation of PTEN. Biol Pharm Bull. 2015;38:507–13. [PMID:25739523]

    Article  PubMed  Google Scholar 

  86. Ichikawa T, Hayashi R, Suzuki K, Imanishi S, Kambara K, Okazawa S, Inomata M, Yamada T, Yamazaki Y, Koshimizu Y, Miwa T, Matsui S, Usui I, Urakaze M, Matsuya Y, Sasahara M, Tobe K. Sirtuin 1 activator SRT1720 suppresses inflammation in an ovalbumin-induced mouse model of asthma. Respirology. 2013;18:332–9. [PMID:23062010]

    Article  PubMed  Google Scholar 

  87. Su RC, Becker AB, Kozyrskyj AL, Hayglass KT. Epigenetic regulation of established human type 1 versus type 2 cytokine responses. J Allergy Clin Immunol. 2008;121:57–63 e3. [PMID:17980413]

    Article  PubMed  CAS  Google Scholar 

  88. Creyghton MP, Cheng AW, Welstead GG, Kooistra T, Carey BW, Steine EJ, Hanna J, Lodato MA, Frampton GM, Sharp PA, Boyer LA, Young RA, Jaenisch R. Histone H3K27ac separates active from poised enhancers and predicts developmental state. Proc Natl Acad Sci U S A. 2010;107:21931–6. [PMID:21106759]

    Article  PubMed  PubMed Central  Google Scholar 

  89. Gerasimova A, Chavez L, Li B, Seumois G, Greenbaum J, Rao A, Vijayanand P, Peters B. Predicting cell types and genetic variations contributing to disease by combining GWAS and epigenetic data. PLoS One. 2013;8:e54359. [PMID:23382893]

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Seumois G, Chavez L, Gerasimova A, Lienhard M, Omran N, Kalinke L, Vedanayagam M, Ganesan AP, Chawla A, Djukanovic R, Ansel KM, Peters B, Rao A, Vijayanand P. Epigenomic analysis of primary human T cells reveals enhancers associated with TH2 memory cell differentiation and asthma susceptibility. Nat Immunol. 2014;15:777–88. [PMID:24997565]

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Clarke DL, Sutcliffe A, Deacon K, Bradbury D, Corbett L, Knox AJ. PKCbetaII augments NF-kappaB-dependent transcription at the CCL11 promoter via p300/CBP-associated factor recruitment and histone H4 acetylation. J Immunol. 2008;181:3503–14. [PMID:18714023]

    Article  PubMed  CAS  Google Scholar 

  92. Adcock IM, Ford P, Ito K, Barnes PJ. Epigenetics and airways disease. Respir Res. 2006;7:21. [PMID:16460559]

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Adcock IM, Lee KY. Abnormal histone acetylase and deacetylase expression and function in lung inflammation. Inflamm Res. 2006;55:311–21. [PMID:16977378]

    Article  PubMed  CAS  Google Scholar 

  94. Nie M, Knox AJ, Pang L. beta2-Adrenoceptor agonists, like glucocorticoids, repress eotaxin gene transcription by selective inhibition of histone H4 acetylation. J Immunol. 2005;175:478–86. [PMID:15972682]

    Article  PubMed  CAS  Google Scholar 

  95. Ghosh S, Karin M. Missing pieces in the NF-kappaB puzzle. Cell. 2002;109(Suppl):S81–96. [PMID:11983155]

    Article  PubMed  CAS  Google Scholar 

  96. Yang J, Park Y, Zhang H, Xu X, Laine GA, Dellsperger KC, Zhang C. Feed-forward signaling of TNF-alpha and NF-kappaB via IKK-beta pathway contributes to insulin resistance and coronary arteriolar dysfunction in type 2 diabetic mice. Am J Physiol Heart Circ Physiol. 2009;296:H1850–8. [PMID:19363130]

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Yamamoto Y, Verma UN, Prajapati S, Kwak YT, Gaynor RB. Histone H3 phosphorylation by IKK-alpha is critical for cytokine-induced gene expression. Nature. 2003;423:655–9. [PMID:12789342]

    Article  PubMed  CAS  Google Scholar 

  98. Keslacy S, Tliba O, Baidouri H, Amrani Y. Inhibition of tumor necrosis factor-alpha-inducible inflammatory genes by interferon-gamma is associated with altered nuclear factor-kappaB transactivation and enhanced histone deacetylase activity. Mol Pharmacol. 2007;71:609–18. [PMID:17108260]

    Article  PubMed  CAS  Google Scholar 

  99. Minucci S, Pelicci PG. Histone deacetylase inhibitors and the promise of epigenetic (and more) treatments for cancer. Nat Rev Cancer. 2006;6:38–51. [PMID:16397526]

    Article  PubMed  CAS  Google Scholar 

  100. Marks PA. The clinical development of histone deacetylase inhibitors as targeted anticancer drugs. Expert Opin Investig Drugs. 2010;19:1049–66. [PMID:20687783]

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Porcu M, Chiarugi A. The emerging therapeutic potential of sirtuin-interacting drugs: from cell death to lifespan extension. Trends Pharmacol Sci. 2005;26:94–103. [PMID:15681027]

    Article  PubMed  CAS  Google Scholar 

  102. Yang SR, Wright J, Bauter M, Seweryniak K, Kode A, Rahman I. Sirtuin regulates cigarette smoke-induced proinflammatory mediator release via RelA/p65 NF-kappaB in macrophages in vitro and in rat lungs in vivo: implications for chronic inflammation and aging. Am J Physiol Lung Cell Mol Physiol. 2007;292:L567–76. [PMID:17041012]

    Article  PubMed  CAS  Google Scholar 

  103. Kim Y, Kim K, Park D, Lee E, Lee H, Lee YS, Choe J, Jeoung D. Histone deacetylase 3 mediates allergic skin inflammation by regulating expression of MCP1 protein. J Biol Chem. 2012;287:25844–59. [PMID:22679019]

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Dombrowsky H, Barrenschee M, Kunze M, Uhlig S. Conserved responses to trichostatin A in rodent lungs exposed to endotoxin or stretch. Pulm Pharmacol Ther. 2009;22:593–602. [PMID:19744573]

    Article  PubMed  CAS  Google Scholar 

  105. Banerjee A, Trivedi CM, Damera G, Jiang M, Jester W, Hoshi T, Epstein JA, Panettieri RA Jr. Trichostatin A abrogates airway constriction, but not inflammation, in murine and human asthma models. Am J Respir Cell Mol Biol. 2012;46:132–8. [PMID:22298527]

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Choi JH, Oh SW, Kang MS, Kwon HJ, Oh GT, Kim DY. Trichostatin A attenuates airway inflammation in mouse asthma model. Clin Exp Allergy. 2005;35:89–96. [PMID:15649272]

    Article  PubMed  CAS  Google Scholar 

  107. Liu Q, Liu J, Roschmann KIL, Van Egmond D, Golebski K, Fokkens WJ, Wang D, Van Drunen CM. Histone deacetylase inhibitors up-regulate LL-37 expression independent of toll-like receptor mediated signalling in airway epithelial cells. J Inflamm. 2013;10:15. [PMID:23577829]

    Article  CAS  Google Scholar 

  108. Toki S, Goleniewska K, Reiss S, Zhou W, Newcomb DC, Bloodworth MH, Stier MT, Boyd KL, Polosukhin VV, Subramaniam S, Peebles RS Jr. The histone deacetylase inhibitor trichostatin A suppresses murine innate allergic inflammation by blocking group 2 innate lymphoid cell (ILC2) activation. Thorax. 2016;71:633–45. [PMID:27071418]

    Article  PubMed  Google Scholar 

  109. Lebreton S, Carraz G, Behriel H, Meunier H. [Pharmacodynamic properties of 2,2-dipropylacetic acid. III]. Therapie. 1964;19:457–67. [PMID:14138083]

    Google Scholar 

  110. Lebreton S, Carraz G, Meunier H, Beriel H. [Pharmacodynamic properties of 2,2-dipropylacetic acid. 2d report on its anti-epileptic properties]. Therapie. 1964;19:451–6. [PMID:14138082]

    Google Scholar 

  111. Meunier H, Carraz G, Neunier Y, Eymard P, Aimard M. [Pharmacodynamic properties of N-dipropylacetic acid]. Therapie. 1963;18:435–8. [PMID:13935231]

    Google Scholar 

  112. Lewis JR. Valproic acid (Depakene). A new anticonvulsant agent. JAMA. 1978;240:2190–2. [PMID:100622]

    Article  PubMed  CAS  Google Scholar 

  113. Khan N, Jeffers M, Kumar S, Hackett C, Boldog F, Khramtsov N, Qian X, Mills E, Berghs SC, Carey N, Finn PW, Collins LS, Tumber A, Ritchie JW, Jensen PB, Lichenstein HS, Sehested M. Determination of the class and isoform selectivity of small-molecule histone deacetylase inhibitors. Biochem J. 2008;409:581–9. [PMID:17868033]

    Article  PubMed  CAS  Google Scholar 

  114. Zhao L, Chen CN, Hajji N, Oliver E, Cotroneo E, Wharton J, Wang D, Li M, Mckinsey TA, Stenmark KR, Wilkins MR. Histone deacetylation inhibition in pulmonary hypertension: therapeutic potential of valproic acid and suberoylanilide hydroxamic acid. Circulation. 2012;126:455–67. [PMID:22711276]

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Shimoyama I, Ninchoji T, Uemura K. The finger-tapping test. A quantitative analysis. Arch Neurol. 1990;47:681–4. [PMID:2346396]

    Article  PubMed  CAS  Google Scholar 

  116. Royce SG, Dang W, Ververis K, De Sampayo N, El-Osta A, Tang ML, Karagiannis TC. Protective effects of valproic acid against airway hyperresponsiveness and airway remodeling in a mouse model of allergic airways disease. Epigenetics. 2011;6:1463–70. [PMID:22139576]

    Article  PubMed  CAS  Google Scholar 

  117. Kienzler AK, Rizzi M, Reith M, Nutt SL, Eibel H. Inhibition of human B-cell development into plasmablasts by histone deacetylase inhibitor valproic acid. J Allergy Clin Immunol. 2013;131:1695–9. [PMID:23465661]

    Article  PubMed  CAS  Google Scholar 

  118. Braza F, Chesne J, Durand M, Dirou S, Brosseau C, Mahay G, Cheminant MA, Magnan A, Brouard S. A regulatory CD9(+) B-cell subset inhibits HDM-induced allergic airway inflammation. Allergy. 2015;70:1421–31. [PMID:26194936]

    Article  PubMed  CAS  Google Scholar 

  119. Natarajan P, Singh A, Mcnamara JT, Secor ER Jr, Guernsey LA, Thrall RS, Schramm CM. Regulatory B cells from hilar lymph nodes of tolerant mice in a murine model of allergic airway disease are CD5+, express TGF-beta, and co-localize with CD4+Foxp3+ T cells. Mucosal Immunol. 2012;5:691–701. [PMID:22718263]

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Davies ER, Haitchi HM, Thatcher TH, Sime PJ, Kottmann RM, Ganesan A, Packham G, O’reilly KM, Davies DE. Spiruchostatin A inhibits proliferation and differentiation of fibroblasts from patients with pulmonary fibrosis. Am J Respir Cell Mol Biol. 2012;46:687–94. [PMID:22246864]

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Waltregny D, Glenisson W, Tran SL, North BJ, Verdin E, Colige A, Castronovo V. Histone deacetylase HDAC8 associates with smooth muscle alpha-actin and is essential for smooth muscle cell contractility. FASEB J. 2005;19(8):966. [PMID:15772115]

    Article  PubMed  CAS  Google Scholar 

  122. Zhang Y, Li N, Caron C, Matthias G, Hess D, Khochbin S, Matthias P. HDAC-6 interacts with and deacetylates tubulin and microtubules in vivo. EMBO J. 2003;22:1168–79. [PMID:12606581]

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Haggarty SJ, Koeller KM, Wong JC, Grozinger CM, Schreiber SL. Domain-selective small-molecule inhibitor of histone deacetylase 6 (HDAC6)-mediated tubulin deacetylation. Proc Natl Acad Sci U S A. 2003;100:4389–94. [PMID:12677000]

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Namdar M, Perez G, Ngo L, Marks PA. Selective inhibition of histone deacetylase 6 (HDAC6) induces DNA damage and sensitizes transformed cells to anticancer agents. Proc Natl Acad Sci U S A. 2010;107:20003–8. [PMID:21037108]

    Article  PubMed  PubMed Central  Google Scholar 

  125. Parmigiani RB, Xu WS, Venta-Perez G, Erdjument-Bromage H, Yaneva M, Tempst P, Marks PA. HDAC6 is a specific deacetylase of peroxiredoxins and is involved in redox regulation. Proc Natl Acad Sci U S A. 2008;105:9633–8. [PMID:18606987]

    Article  PubMed  PubMed Central  Google Scholar 

  126. Tang W, Luo T, Greenberg EF, Bradner JE, Schreiber SL. Discovery of histone deacetylase 8 selective inhibitors. Bioorg Med Chem Lett. 2011;21:2601–5. [PMID:21334896]

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Dekker FJ, Van Den Bosch T, Martin NI. Small molecule inhibitors of histone acetyltransferases and deacetylases are potential drugs for inflammatory diseases. Drug Discov Today. 2014;19:654–60. [PMID:24269836]

    Article  PubMed  CAS  Google Scholar 

  128. Lau OD, Kundu TK, Soccio RE, Ait-Si-Ali S, Khalil EM, Vassilev A, Wolffe AP, Nakatani Y, Roeder RG, Cole PA. HATs off: selective synthetic inhibitors of the histone acetyltransferases p300 and PCAF. Mol Cell. 2000;5:589–95. [PMID:10882143]

    Article  PubMed  CAS  Google Scholar 

  129. Zheng Y, Balasubramanyam K, Cebrat M, Buck D, Guidez F, Zelent A, Alani RM, Cole PA. Synthesis and evaluation of a potent and selective cell-permeable p300 histone acetyltransferase inhibitor. J Am Chem Soc. 2005;127:17182–3. [PMID:16332055]

    Article  PubMed  CAS  Google Scholar 

  130. Balasubramanyam K, Swaminathan V, Ranganathan A, Kundu TK. Small molecule modulators of histone acetyltransferase p300. J Biol Chem. 2003;278:19134–40. [PMID:12624111]

    Article  PubMed  CAS  Google Scholar 

  131. Balasubramanyam K, Varier RA, Altaf M, Swaminathan V, Siddappa NB, Ranga U, Kundu TK. Curcumin a novel p300/CREB-binding protein-specific inhibitor of acetyltransferase, represses the acetylation of histone/nonhistone proteins and histone acetyltransferase-dependent chromatin transcription. J Biol Chem. 2004;279:51163–71. [PMID:15383533]

    Article  PubMed  CAS  Google Scholar 

  132. Balasubramanyam K, Altaf M, Varier RA, Swaminathan V, Ravindran A, Sadhale PP, Kundu TK. Polyisoprenylated benzophenone, garcinol, a natural histone acetyltransferase inhibitor, represses chromatin transcription and alters global gene expression. J Biol Chem. 2004;279:33716–26. [PMID:15155757]

    Article  PubMed  CAS  Google Scholar 

  133. Cui ZL, Gu W, Ding T, Peng XH, Chen X, Luan CY, Han RC, Xu WG, Guo XJ. Histone modifications of Notch1 promoter affect lung CD4+ T cell differentiation in asthmatic rats. Int J Immunopathol Pharmacol. 2013;26:371–81. [PMID:23755752]

    Article  PubMed  CAS  Google Scholar 

  134. Morimoto T, Sunagawa Y, Kawamura T, Takaya T, Wada H, Nagasawa A, Komeda M, Fujita M, Shimatsu A, Kita T, Hasegawa K. The dietary compound curcumin inhibits p300 histone acetyltransferase activity and prevents heart failure in rats. J Clin Invest. 2008;118:868–78. [PMID:18292809]

    PubMed  PubMed Central  CAS  Google Scholar 

  135. Karaman M, Firinci F, Cilaker S, Uysal P, Tugyan K, Yilmaz O, Uzuner N, Karaman O. Anti-inflammatory effects of curcumin in a murine model of chronic asthma. Allergol Immunopathol. 2012;40:210–4. [PMID:21862198]

    Article  CAS  Google Scholar 

  136. Zeng X, Cheng Y, Qu Y, Xu J, Han Z, Zhang T. Curcumin inhibits the proliferation of airway smooth muscle cells in vitro and in vivo. Int J Mol Med. 2013;32:629–36. [PMID:23807697]

    Article  PubMed  CAS  Google Scholar 

  137. Kobayashi T, Hashimoto S, Horie T. Curcumin inhibition of Dermatophagoides farinea-induced interleukin-5 (IL-5) and granulocyte macrophage-colony stimulating factor (GM-CSF) production by lymphocytes from bronchial asthmatics. Biochem Pharmacol. 1997;54:819–24. [PMID:9353136]

    Article  PubMed  CAS  Google Scholar 

  138. Oh SW, Cha JY, Jung JE, Chang BC, Kwon HJ, Lee BR, Kim DY. Curcumin attenuates allergic airway inflammation and hyper-responsiveness in mice through NF-kappaB inhibition. J Ethnopharmacol. 2011;136:414–21. [PMID:20643202]

    Article  PubMed  CAS  Google Scholar 

  139. Chong L, Zhang W, Nie Y, Yu G, Liu L, Lin L, Wen S, Zhu L, Li C. Protective effect of curcumin on acute airway inflammation of allergic asthma in mice through Notch1-GATA3 signaling pathway. Inflammation. 2014;37:1476–85. [PMID:24706026]

    Article  PubMed  CAS  Google Scholar 

  140. Sbardella G, Castellano S, Vicidomini C, Rotili D, Nebbioso A, Miceli M, Altucci L, Mai A. Identification of long chain alkylidenemalonates as novel small molecule modulators of histone acetyltransferases. Bioorg Med Chem Lett. 2008;18:2788–92. [PMID:18434144]

    Article  PubMed  CAS  Google Scholar 

  141. Sung B, Pandey MK, Ahn KS, Yi T, Chaturvedi MM, Liu M, Aggarwal BB. Anacardic acid (6-nonadecyl salicylic acid), an inhibitor of histone acetyltransferase, suppresses expression of nuclear factor-kappaB-regulated gene products involved in cell survival, proliferation, invasion, and inflammation through inhibition of the inhibitory subunit of nuclear factor-kappaBalpha kinase, leading to potentiation of apoptosis. Blood. 2008;111:4880–91. [PMID:18349320]

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Carvalho AL, Annoni R, Torres LH, Durao AC, Shimada AL, Almeida FM, Hebeda CB, Lopes FD, Dolhnikoff M, Martins MA, Silva LF, Farsky SH, Saldiva PH, Ulrich CM, Owen RW, Marcourakis T, Trevisan MT, Mauad T. Anacardic acids from cashew nuts ameliorate lung damage induced by exposure to diesel exhaust particles in mice. Evid Based Complement Alternat Med. 2013;2013:549879. [PMID:23533495]

    Article  PubMed  PubMed Central  Google Scholar 

  143. Barnes PJ. Corticosteroid resistance in patients with asthma and chronic obstructive pulmonary disease. J Allergy Clin Immunol. 2013;131:636–45. [PMID:23360759]

    Article  PubMed  CAS  Google Scholar 

  144. Nicolaides NC, Galata Z, Kino T, Chrousos GP, Charmandari E. The human glucocorticoid receptor: molecular basis of biologic function. Steroids. 2010;75:1–12. [PMID:19818358]

    Article  PubMed  CAS  Google Scholar 

  145. Kim KM, Trump BF. Amorphous calcium precipitations in human aortic valve. Calcif Tissue Res. 1975;18:155–60. [PMID:1148898]

    Article  PubMed  CAS  Google Scholar 

  146. Rhen T, Cidlowski JA. Antiinflammatory action of glucocorticoids--new mechanisms for old drugs. N Engl J Med. 2005;353:1711–23. [PMID:16236742]

    Article  PubMed  CAS  Google Scholar 

  147. Revollo JR, Cidlowski JA. Mechanisms generating diversity in glucocorticoid receptor signaling. Ann N Y Acad Sci. 2009;1179:167–78. [PMID:19906239]

    Article  PubMed  CAS  Google Scholar 

  148. Newton R, Holden NS. Separating transrepression and transactivation: a distressing divorce for the glucocorticoid receptor? Mol Pharmacol. 2007;72:799–809. [PMID:17622575]

    Article  PubMed  CAS  Google Scholar 

  149. Jordan FL. Localization of G-protein in rat occipital cerebral cortex. Brain Res Bull. 1990;25:155–8. [PMID:2119855]

    Article  PubMed  CAS  Google Scholar 

  150. Ito K, Yamamura S, Essilfie-Quaye S, Cosio B, Ito M, Barnes PJ, Adcock IM. Histone deacetylase 2-mediated deacetylation of the glucocorticoid receptor enables NF-kappaB suppression. J Exp Med. 2006;203:7–13. [PMID:16380507]

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  151. Echeverria PC, Picard D. Molecular chaperones, essential partners of steroid hormone receptors for activity and mobility. Biochim Biophys Acta. 1803;2010:641–9. [PMID:20006655]

    Google Scholar 

  152. Meijsing SH, Pufall MA, So AY, Bates DL, Chen L, Yamamoto KR. DNA binding site sequence directs glucocorticoid receptor structure and activity. Science. 2009;324:407–10. [PMID:19372434]

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  153. Lonard DM, O’malley BW. Nuclear receptor coregulators: judges, juries, and executioners of cellular regulation. Mol Cell. 2007;27:691–700. [PMID:17803935]

    Article  PubMed  CAS  Google Scholar 

  154. York B, O’Malley BW. Steroid receptor coactivator (SRC) family: masters of systems biology. J Biol Chem. 2010;285:38743–50. [PMID:20956538]

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  155. Burd CJ, Ward JM, Crusselle-Davis VJ, Kissling GE, Phadke D, Shah RR, Archer TK. Analysis of chromatin dynamics during glucocorticoid receptor activation. Mol Cell Biol. 2012;32:1805–17. [PMID:22451486]

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  156. Trotter KW, Archer TK. The BRG1 transcriptional coregulator. Nucl Recept Signal. 2008;6:e004. [PMID:18301784]

    PubMed  PubMed Central  Google Scholar 

  157. Yao TP, Ku G, Zhou N, Scully R, Livingston DM. The nuclear hormone receptor coactivator SRC-1 is a specific target of p300. Proc Natl Acad Sci U S A. 1996;93:10626–31. [PMID:8855229]

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  158. Imasato A, Desbois-Mouthon C, Han J, Kai H, Cato AC, Akira S, Li JD. Inhibition of p38 MAPK by glucocorticoids via induction of MAPK phosphatase-1 enhances nontypeable Haemophilus influenzae-induced expression of toll-like receptor 2. J Biol Chem. 2002;277:47444–50. [PMID:12356755]

    Article  PubMed  CAS  Google Scholar 

  159. Vandevyver S, Dejager L, Van Bogaert T, Kleyman A, Liu Y, Tuckermann J, Libert C. Glucocorticoid receptor dimerization induces MKP1 to protect against TNF-induced inflammation. J Clin Invest. 2012;122:2130–40. [PMID:22585571]

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  160. Cannarile L, Cuzzocrea S, Santucci L, Agostini M, Mazzon E, Esposito E, Muia C, Coppo M, Di Paola R, Riccardi C. Glucocorticoid-induced leucine zipper is protective in Th1-mediated models of colitis. Gastroenterology. 2009;136:530–41. [PMID:18996377]

    Article  PubMed  CAS  Google Scholar 

  161. Mittelstadt PR, Ashwell JD. Inhibition of AP-1 by the glucocorticoid-inducible protein GILZ. J Biol Chem. 2001;276:29603–10. [PMID:11397794]

    Article  PubMed  CAS  Google Scholar 

  162. Scheinman RI, Cogswell PC, Lofquist AK, Baldwin AS Jr. Role of transcriptional activation of I kappa B alpha in mediation of immunosuppression by glucocorticoids. Science. 1995;270:283–6. [PMID:7569975]

    Article  PubMed  CAS  Google Scholar 

  163. Matthews JG, Ito K, Barnes PJ, Adcock IM. Defective glucocorticoid receptor nuclear translocation and altered histone acetylation patterns in glucocorticoid-resistant patients. J Allergy Clin Immunol. 2004;113:1100–8. [PMID:15208591]

    Article  PubMed  CAS  Google Scholar 

  164. Dostert A, Heinzel T. Negative glucocorticoid receptor response elements and their role in glucocorticoid action. Curr Pharm Des. 2004;10:2807–16. [PMID:15379669]

    Article  PubMed  CAS  Google Scholar 

  165. Barnes PJ, Karin M. Nuclear factor-kappaB: a pivotal transcription factor in chronic inflammatory diseases. N Engl J Med. 1997;336:1066–71. [PMID:9091804]

    Article  PubMed  CAS  Google Scholar 

  166. Almawi WY, Melemedjian OK. Molecular mechanisms of glucocorticoid antiproliferative effects: antagonism of transcription factor activity by glucocorticoid receptor. J Leukoc Biol. 2002;71:9–15. [PMID:11781376]

    PubMed  CAS  Google Scholar 

  167. Barnes PJ. Role of HDAC2 in the pathophysiology of COPD. Annu Rev Physiol. 2009;71:451–64. [PMID:18817512]

    Article  PubMed  CAS  Google Scholar 

  168. To Y, Ito K, Kizawa Y, Failla M, Ito M, Kusama T, Elliott WM, Hogg JC, Adcock IM, Barnes PJ. Targeting phosphoinositide-3-kinase-delta with theophylline reverses corticosteroid insensitivity in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2010;182:897–904. [PMID:20224070]

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  169. Ito K, Hanazawa T, Tomita K, Barnes PJ, Adcock IM. Oxidative stress reduces histone deacetylase 2 activity and enhances IL-8 gene expression: role of tyrosine nitration. Biochem Biophys Res Commun. 2004;315:240–5. [PMID:15013452]

    Article  PubMed  CAS  Google Scholar 

  170. Osoata GO, Hanazawa T, Brindicci C, Ito M, Barnes PJ, Kharitonov S, Ito K. Peroxynitrite elevation in exhaled breath condensate of COPD and its inhibition by fudosteine. Chest. 2009;135:1513–20. [PMID:19188555]

    Article  PubMed  CAS  Google Scholar 

  171. Cosio BG, Tsaprouni L, Ito K, Jazrawi E, Adcock IM, Barnes PJ. Theophylline restores histone deacetylase activity and steroid responses in COPD macrophages. J Exp Med. 2004;200:689–95. [PMID:15337792]

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  172. Ford PA, Durham AL, Russell RE, Gordon F, Adcock IM, Barnes PJ. Treatment effects of low-dose theophylline combined with an inhaled corticosteroid in COPD. Chest. 2010;137:1338–44. [PMID:20299628]

    Article  PubMed  CAS  Google Scholar 

  173. Olsen J, Themstrup L, Jemec GB. Optical coherence tomography in dermatology. G Ital Dermatol Venereol. 2015;150:603–15. [PMID:26129683]

    PubMed  CAS  Google Scholar 

  174. Lehar J, Krueger AS, Avery W, Heilbut AM, Johansen LM, Price ER, Rickles RJ, Short GF 3rd, Staunton JE, Jin X, Lee MS, Zimmermann GR, Borisy AA. Synergistic drug combinations tend to improve therapeutically relevant selectivity. Nat Biotechnol. 2009;27:659–66. [PMID:19581876]

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  175. Mercado N, To Y, Ito K, Barnes PJ. Nortriptyline reverses corticosteroid insensitivity by inhibition of phosphoinositide-3-kinase-delta. J Pharmacol Exp Ther. 2011;337:465–70. [PMID:21300705]

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  176. Expression of concern: decline in NRF2-regulated antioxidants in COPD lungs due to loss of its positive regulator, and heightened endoplasmic reticulum stress in the lungs of patients with COPD. Am J Respir Critic Care Med. 2014;190:1200. [PMID:25398118]

    Google Scholar 

  177. Mercado N, Thimmulappa R, Thomas CM, Fenwick PS, Chana KK, Donnelly LE, Biswal S, Ito K, Barnes PJ. Decreased histone deacetylase 2 impairs Nrf2 activation by oxidative stress. Biochem Biophys Res Commun. 2011;406:292–8. [PMID:21320471]

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  178. Xu F, Kang Y, Zhang H, Piao Z, Yin H, Diao R, Xia J, Shi L. Akt1-mediated regulation of macrophage polarization in a murine model of Staphylococcus aureus pulmonary infection. J Infect Dis. 2013;208:528–38. [PMID:23613163]

    Article  PubMed  CAS  Google Scholar 

  179. Carpenter CL, Duckworth BC, Auger KR, Cohen B, Schaffhausen BS, Cantley LC. Purification and characterization of phosphoinositide 3-kinase from rat liver. J Biol Chem. 1990;265:19704–11. [PMID:2174051]

    PubMed  CAS  Google Scholar 

  180. Ito K, Caramori G, Adcock IM. Therapeutic potential of phosphatidylinositol 3-kinase inhibitors in inflammatory respiratory disease. J Pharmacol Exp Ther. 2007;321:1–8. [PMID:17021257]

    Article  PubMed  CAS  Google Scholar 

  181. Marwick JA, Caramori G, Stevenson CS, Casolari P, Jazrawi E, Barnes PJ, Ito K, Adcock IM, Kirkham PA, Papi A. Inhibition of PI3Kdelta restores glucocorticoid function in smoking-induced airway inflammation in mice. Am J Respir Crit Care Med. 2009;179:542–8. [PMID:19164702]

    Article  PubMed  CAS  Google Scholar 

  182. Tsai SC, Seto E. Regulation of histone deacetylase 2 by protein kinase CK2. J Biol Chem. 2002;277:31826–33. [PMID:12082111]

    Article  PubMed  CAS  Google Scholar 

  183. Kobayashi Y, Wada H, Rossios C, Takagi D, Charron C, Barnes PJ, Ito K. A novel macrolide/fluoroketolide, solithromycin (CEM-101), reverses corticosteroid insensitivity via phosphoinositide 3-kinase pathway inhibition. Br J Pharmacol. 2013;169:1024–34. [PMID:23758162]

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  184. Malhotra D, Thimmulappa RK, Mercado N, Ito K, Kombairaju P, Kumar S, Ma J, Feller-Kopman D, Wise R, Barnes P, Biswal S. Denitrosylation of HDAC2 by targeting Nrf2 restores glucocorticosteroid sensitivity in macrophages from COPD patients. J Clin Invest. 2011;121:4289–302. [PMID:22005302]

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  185. Xu F, Diao R, Liu J, Kang Y, Wang X, Shi L. Curcumin attenuates staphylococcus aureus-induced acute lung injury. Clin Respir J. 2015;9:87–97. [PMID:24460792]

    Article  PubMed  CAS  Google Scholar 

  186. Meja KK, Rajendrasozhan S, Adenuga D, Biswas SK, Sundar IK, Spooner G, Marwick JA, Chakravarty P, Fletcher D, Whittaker P, Megson IL, Kirkham PA, Rahman I. Curcumin restores corticosteroid function in monocytes exposed to oxidants by maintaining HDAC2. Am J Respir Cell Mol Biol. 2008;39:312–23. [PMID:18421014]

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  187. Adcock IM. HDAC inhibitors as anti-inflammatory agents. Br J Pharmacol. 2007;150:829–31. [PMID:17325655]

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  188. Bilodeau S, Vallette-Kasic S, Gauthier Y, Figarella-Branger D, Brue T, Berthelet F, Lacroix A, Batista D, Stratakis C, Hanson J, Meij B, Drouin J. Role of Brg1 and HDAC2 in GR trans-repression of the pituitary POMC gene and misexpression in Cushing disease. Genes Dev. 2006;20:2871–86. [PMID:17043312]

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  189. Iwata K, Tomita K, Sano H, Fujii Y, Yamasaki A, Shimizu E. Trichostatin A, a histone deacetylase inhibitor, down-regulates interleukin-12 transcription in SV-40-transformed lung epithelial cells. Cell Immunol. 2002;218:26–33. [PMID:12470611]

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangdong Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sun, X., Chen, Z., Wang, X. (2018). HAT-HDAC System in Asthma. In: Wang, X., Chen, Z. (eds) Genomic Approach to Asthma. Translational Bioinformatics, vol 12. Springer, Singapore. https://doi.org/10.1007/978-981-10-8764-6_12

Download citation

Publish with us

Policies and ethics