Skip to main content

Photocatalytic Denitrification in Flue Gas

  • Chapter
  • First Online:
Photo-catalytic Control Technologies of Flue Gas Pollutants

Part of the book series: Energy and Environment Research in China ((EERC))

  • 372 Accesses

Abstract

NOX and SO2 emission from power plants during the coal burning process has been one of the major problems that result in adverse effect on the environment and human health. In general, ammonia based selective catalytic reduction (NH3-SCR) and calcium-based wet flue gas desulfurization (WFGD-Ca) processes have been applied to flue gas treatment of coal-fired power plants on a large scale, but they have not been able to achieve the comprehensive removal of a variety of pollutants . The combination of NH3-SCR and WFGD-Ca processes is mainly used to remove both simultaneous NOX and SO2, but the high capital operating costs limit its use in developing countries. In recent years, the study on the degradation of wastewater and gaseous pollutants by titanium dioxide has received extensive attention and has obtained good results in basic research and application-oriental research. Fe3O4-titanium dioxide composites were prepared by hydrothermal method, and the titanium dioxide layer was coated on the surface of Fe3O4. Because of the benefits of photocatalytic method, it has been paid attention to control NOx and other pollutant in the flue gas. The main principle of photocatalytically treating NOx is to photocatalytically oxidize NO into NO2, which is soluble and may be captured by WFGD through liquid absorption.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S.A. Guerra, S.R. Olsen, J.J. Anderson, Evaluation of the SO2 and NOx offset ratio method to account for secondary PM2.5 formation. J. Air Waste Manag. Assoc. 64, 265–271 (2014)

    Article  CAS  Google Scholar 

  2. L. Tang, T. Nagashima, K. Hasegawa, T. Ohara, K. Sudo, N. Itsubo, Development of human health damage factors for PM2.5 based on a global chemical transport model. Int. J. Life Cycle Assess., 1–11 (2015)

    Google Scholar 

  3. I. Mochida, Y. Korai, M. Shirahama, S. Kawano, T. Hada, Y. Seo, M. Yoshikawa, A. Yasutake, Removal of SOx and NOx over activated carbon fibers. Carbon 38, 227–239 (2000)

    Article  CAS  Google Scholar 

  4. Y.T. Li, Y.J. Mao, Q. Zhong, H.X. Qu, J. Wang, Effects of components of SCR catalyst on NOx performance. J. Fuel Chem. Technol. 37, 601–606 (2009)

    Article  CAS  Google Scholar 

  5. Y. Zhao, Z.G. Han, Y.H. Han, J. Yao, Application and new progress of dry flue gas simultaneous desulfurization and denitrification technology. Ind. Saf. Environ. Prot. 4, 4–6 (2009)

    Google Scholar 

  6. Y. Gao, H. Liu, Preparation and catalytic property study of a novel kind of suspended photocatalyst of titanium dioxide-activated carbon immobilized on silicone rubber film. Mater. Chem. Phys. 92, 604–608 (2005)

    Article  CAS  Google Scholar 

  7. H. Yamashita, M. Harada, J. Misaka, M. Takeuchi, K. Ikeue, M. Anpo, Degradation of propanol diluted in water under visible light irradiation using metal ion-implanted titanium dioxide photocatalysts. J. Photochem. Photobiol., A 148, 257–261 (2002)

    Article  CAS  Google Scholar 

  8. X. Zhao, L. Lv, B. Pan, W. Zhang, S.J. Zhang, Q.X. Zhang, Polymer-supported nanocomposites for environmental application: a review. Chem. Eng. J. 170, 381–394 (2011)

    Article  CAS  Google Scholar 

  9. S.K. Kim, H. Chang, K.K. Cho, D.S. Kila, S.W. Cho, H.D. Jang, J.W. Choi, J. Choi, Enhanced photocatalytic property of nanoporous titanium dioxide/SiO2 micro-particles prepared by aerosol assisted co-assembly of nanoparticles. Mater. Lett. 65, 3330–3332 (2011)

    Article  CAS  Google Scholar 

  10. L.H. Mahajan, S.T. Mhaske, Composite microspheres of poly (o-anisidine)/titanium dioxide. Mater. Lett. 68, 183–186 (2012)

    Article  CAS  Google Scholar 

  11. M. Kapilashrami, Y. Zhang, Y-S Liu, A. Hagfeldt, J. Guo, Probing the optical property and electronic structure of TiO2 nanomaterials for renewable energy applications. Chem. Rev. 114(19), 9662–707 (2014)

    Article  CAS  Google Scholar 

  12. Y. Liu, L. Wang, W. Jin, C. Zhang, M. Zhou, W. Chen, Synthesis and photocatalytic property of TiO2@V2O5 core-shell hollow porous microspheres towards gaseous benzene. J. Alloy. Compd. 690, 604–11 (2017)

    Google Scholar 

  13. Y. Ma, X. Wang, Y. Jia, X. Chen, H. Han, C. Li, Titanium dioxide-based nanomaterials for photocatalytic fuel generations. Chem. Rev. 114(19), 9987–10043 (2014)

    Article  CAS  Google Scholar 

  14. H. An, L. Pan, H. Cui, D. Zhou, B. Wang, J. Zhai, et al., Electrocatalytic performance of Pd nanoparticles supported on TiO2-MWCNTs for methanol, ethanol, and isopropanol in alkaline media. J. Electroanal. Chem. 741, 56–63 (2015)

    Article  CAS  Google Scholar 

  15. R. Zhou, J. Wu, J. Zhang, H. Tian, P. Liang, T. Zeng, et al., Photocatalytic oxidation of gas-phase Hg0 on the exposed reactive facets of BiOI/BiOIO3 heterostructures. Appl. Catal. B-Environ. 204, 465–74 (2017)

    Article  CAS  Google Scholar 

  16. W.-J. Ong, L.-L. Tan, Y.H. Ng, S.-T. Yong, S.-P. Chai, Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability? Chem. Rev. 116(12), 7159–329 (2016)

    Google Scholar 

  17. L. Ding, R. Wei, H. Chen, J. Hu, J. Li, Controllable synthesis of highly active BiOCl hierarchical microsphere self-assembled by nanosheets with tunable thickness. Appl. Catal. B-Environ. 172–173, 91–9 (2015)

    Article  CAS  Google Scholar 

  18. S. Sarina, E.R. Waclawik, H. Zhu, Photocatalysis on supported gold and silver nanoparticles under ultraviolet and visible light irradiation. Green Chem. 15(7), 1814–33 (2013)

    Google Scholar 

  19. X. Chen, S.S. Mao, Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem. Rev. 107(7), 2891–959 (2007)

    Article  CAS  Google Scholar 

  20. K. Li, B. Peng, T. Peng, Recent advances in heterogeneous photocatalytic CO2 Conversion to solar fuels. ACS Cat. 6(11), 7485–527 (2016)

    Article  CAS  Google Scholar 

  21. X.M. Qi, M.L. Gu, X.Y. Zhu, J. Wu, H.M. Long, K. He, et al., Fabrication of BiOIO3 nanosheets with remarkable photocatalytic oxidation removal for gaseous elemental mercury. Chem. Eng. J. 285, 11–9 (2016)

    Article  CAS  Google Scholar 

  22. L.P. Belo, L.K. Elliott, R.J. Stange, R. Spörl, K.V. Shah, J. Maier, T.F. Wall, Hightemperature conversion of SO2 to SO3: homogeneous experiments and catalytic effect of fly ash from air and oxy-fuel firing. Energy Fuels 28, 7243–7251 (2014)

    Article  CAS  Google Scholar 

  23. J. Gao, R.Z. Jiang, J. Wang, P.L. Kang, B.X. Wang, Y. Li, K. Li, Z.D. Zhang, The investigation of sonocatalytic activity of Er3+: YAlO3/titanium dioxide-ZnO composite in azo dyes degradation. Ultrason. Sonochem. 18, 541–548 (2011)

    Article  CAS  Google Scholar 

  24. Y. Liu, L. Yu, Y. Hu, C.F. Guo, F.M. Zhang, X.W. (David) Lou, A magnetically separable photocatalyst based on nest-like c-Fe2O3/ZnO double-shelled hollow structures with enhanced photocatalytic activity. Nanoscale 4, 183–187 (2012)

    Article  CAS  Google Scholar 

  25. M. Ye, Q. Zhang, Y. Hu, J. Ge, Z. Lu, L. He, Z.L. Chen, Y.D. Yin, Magnetically recoverable core-shell nanocomposites with enhanced photocatalytic activity. Chem. A Eur. J. 16, 6243–6250 (2010)

    Article  CAS  Google Scholar 

  26. G. Cheng, Z.G. Wang, Y.L. Liu, J.L. Zhang, D.H. Sun, J.Z. Ni, Magnetic affinity microspheres with meso-/macroporous shells for selective enrichment and fast separation of phosphorylated biomolecules. ACS Appl. Mater. Interfaces. 5, 3182–3190 (2013)

    Article  CAS  Google Scholar 

  27. Y. Li, H. Yi, X. Tang et al., Study on the performance of simultaneous desulfurization and denitrification of Fe3O4-titanium dioxide composites. Chem. Eng. J. 304, 89–97 (2016)

    Article  CAS  Google Scholar 

  28. F. Delbecq, P. Sautet, Interplay between magnetism and chemisorption: a theoretical study of CO and NO adsorption on a Pd3Mn alloy surface. Chem. Phys. Lett. 302, 91–97 (1999)

    Article  CAS  Google Scholar 

  29. S. Bennici, G. Antonella, M. Lazzarin, V. Ragaini, CuO based catalysts on modified acidic silica supports tested in the de-NOx reduction. Ultrason. Sonochem. 12, 307–312 (2005)

    Article  CAS  Google Scholar 

  30. H. Ichiura, T. Kitaoka, H. Tanaka, Photocatalutic oxidation of NOx using composite sheets containing titanium dioxide and a metal compound. Chemosphere 51, 855–860 (2003)

    Article  CAS  Google Scholar 

  31. L. Zhao, Experimental study on photocatalytic oxidation for simultaneous desulfurization and denitrification, North China Electric Power University, 2007

    Google Scholar 

  32. E.S. Kikkinides, R.T. Yang, Gas separation and purification of polymeric adsorbents. Ind. Eng. Chem. Res. 32, 4063–4077 (1995)

    Google Scholar 

  33. J. Villadsen, M.L. Micheisen, Solution of differential equation models by polynomial approximation. AIChE J. 25, 1345–1359 (1994)

    Google Scholar 

  34. Q. He, Z.X. Zhang, J.W. Xiong, Y.Y. Xiong, H. Xiao, A novel biomaterial-Fe3O4: titanium dioxide core-shell nano particle with magnetic performance and high visible light photocatalytic activity. Opt. Mater. 31, 380–384 (2008)

    Article  CAS  Google Scholar 

  35. M. Kantcheva, A.S. Vakkasoglu, Cobalt supported on zirconia and sulfated zirconia. I: FT-IR spectroscopic characterization of the NOx species formed upon NO adsorption and NO/O2 coadsorption. J. Catal. 223, 352–363 (2004)

    Article  CAS  Google Scholar 

  36. Q. Wang, S.Y. Park, J.S. Choi, J.S. Chung, Co/KxTi2O5 catalysts prepared by ion exchange method for NO oxidation to NO2. Appl. Catal. B 79, 101–107 (2008)

    Article  CAS  Google Scholar 

  37. J.X. Zhang, Studies on absorption of SO2 and NOx by activated carbon, Xi’an University of Architecture and Technology, 2008

    Google Scholar 

  38. H.Y. Huang, R.T. Yang, Removal of NO by reversible adsorption on Fe–Mn based transition metal oxides. Langmuir 17, 4997–5003 (2001)

    Article  CAS  Google Scholar 

  39. J.S. Dalton, P.A. Janes, N.G. Jones, J.A. Nicholson, K.R. Hallam, G.C. Allen, Photocatalytic oxidation of NOx gases using titanium dioxide: a surface spectro-scopic approach. Environ. Pollut. 120, 415–422 (2002)

    Article  CAS  Google Scholar 

  40. Y.Q. Luo, D.J. Li, Z. Huang, Preparation of titanium dioxide particles and properties for flue gas desulfurization. Environ. Sci. 24(1), 147–151 (2003). (in Chinese)

    CAS  Google Scholar 

  41. R.T. Yang, W.B. Li, N. Chen, Reversible chemisorption of nitric oxide in the presence of oxygen on titania and titania modified with surface sulfate. Appl. Catal. A-Gen. 169, 215–225 (1998)

    Article  CAS  Google Scholar 

  42. Y.S. Lin, S.G. Deng, Analysis of liquid chromatography with nonuniform crystallite particles. AIChE J. 36(10), 1569–1576 (1990)

    Article  CAS  Google Scholar 

  43. Y. Wang, S.O. Mohammed, J.C. Lavelley et al., FTIR study of adsorption and reaction of SO2 and H2S on Na/SiO2. Appl. Catal. B-Environ. 16, 279–290 (1998)

    Article  CAS  Google Scholar 

  44. J. Shang, Z.L. Xu, G.Y. Du et al., Studies on photocatalytic oxidation reaction SO2 over titanium dioxide. Chem. J. Chin. U 21, 1299–1300 (2000)

    CAS  Google Scholar 

  45. X.Y. Tang, Atmosphere environmental chemistry (High Education Press, Beijing, 1990), pp. 124–125

    Google Scholar 

  46. R. Campostrini, G. Carturan, L. Palmisano, Sol-gel derived anatase titanium dioxide morphology and photoactivity. Mater. Chem. Phys. 38(3), 277–283 (1994)

    Article  CAS  Google Scholar 

  47. J. Sanchez, J. Augustynski, X-ray photoelectron spectroscopic study of the interaction of various anions with the oxide-covered titanium metal. J. Electroanal. Chem. 103(26), 423–426 (1979)

    Article  CAS  Google Scholar 

  48. K. Hashimoto, K. Wasada, N. Toukai et al., Photocatalytic oxidation of nitrogen monoxide over titanium (VI) oxide nanocrystals large size areas. J. Photochem. Photobiol., A 136, 103–109 (2000)

    Article  CAS  Google Scholar 

  49. M. Romero, J. Blanco, B. Sanchez et al., Solar photocatalytic degradation of water and air pollutants: challenges and perspectives. Sol. Energy 66, 169–182 (1999)

    Article  CAS  Google Scholar 

  50. Yi Zhao, Hongtao Zhu, Xiaoling An, Su Peng, Study on SCR technique for flue gas denitrification in coal-fired power plants. Electr. Power Environ. Prot. 25(1), 7–10 (2009). (In Chinese)

    CAS  Google Scholar 

  51. L. Sun, X. Li, Applications of SCR denitrification technology in coal-fired power plants. Sci. Technol. Assoc. Forum, 2(2), 37 (2010)

    Google Scholar 

  52. H. Chen, X. Song, H. Jiang, Z. Cui, G. Zhang, Maintenance and affecting factors for the performance of SCR system. J. Shandong Jianzhu Univ. 23(2), 145–149 (2008). (In Chinese)

    Google Scholar 

  53. S. Wang, X. Huang, The development of catalysts for selective catalytic reduction of NOX in flue gas. China Chem. 5, 55–60 (2009). (In Chinese)

    CAS  Google Scholar 

  54. Y. Wang, Y. Sun, F. Chen, Y. Lin, X. Liang, Characteristics of SCR catalyst and its application in coal-fired power plants De-NOx system. Electr. Power Environ. Prot. 25(4), 13–15 (2009). (In Chinese)

    Google Scholar 

  55. Kang Liu, Qiang Zhang, Yu. Hong, Yu. Hong, Species and application of SCR catalyst for flue gas denitrification in coal-fired power plant. Electr. Power Environ. Prot. 25(4), 9–12 (2009). (In Chinese)

    CAS  Google Scholar 

  56. Xu Furong, Lirong Zhou, Discussion about processing scheme for disabled SCR catalyst in coal-fired power plant. China Environ. Projection Ind. 11, 25–27 (2010). (In Chinese)

    Google Scholar 

  57. F. Zhao, M.C. Lai, D.L. Harrington, Automotive spark-ignited direct injection gasoline engines. Prog. Energy Combust. Sci. 25, 437–562 (1999)

    Article  CAS  Google Scholar 

  58. J.W. Hosch, J.P. Walters, High spatial resolution schlieren photography. Appl. Opt. 16(2), 473–485 (1977)

    Article  CAS  Google Scholar 

  59. J.H. Li, J.M. Hao, L.X. Fu et al., The activity and characterization of sol-gel Sn/Al2O3 catalyst for selective catalytic reduction of NOX in the presence of oxygen. Catal. Today 90, 215–221 (2004)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiang Wu .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Shanghai Jiao Tong University Press and Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wu, J., Ren, J., Pan, W., Lu, P., Qi, Y. (2019). Photocatalytic Denitrification in Flue Gas. In: Photo-catalytic Control Technologies of Flue Gas Pollutants. Energy and Environment Research in China. Springer, Singapore. https://doi.org/10.1007/978-981-10-8750-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-8750-9_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-8748-6

  • Online ISBN: 978-981-10-8750-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics