Skip to main content

Modified Photocatalysts

  • Chapter
  • First Online:
  • 356 Accesses

Part of the book series: Energy and Environment Research in China ((EERC))

Abstract

For photocatalyst, changing its appearance and doping with other materials are the effective methods to enhance its photocatalytic activity. For titanium-based photocatalysts, we studied the titanium dioxide hollow microspheres and anatase titanium dioxide with co-exposed (001) and (101) planes. The results show that controlling of its morphology can effectively improve the photoactivity. Meanwhile, doping titanium dioxide with metal oxide and nonmetal (CuO/titanium dioxide, V2O5/titanium dioxide , carbon spheres supported CuO/titanium dioxide , carbon decorated In2O3/titanium dioxide ) also can improve the separation efficiency of photogenerated electrons and holes. Moreover, the as-prepared materials were characterized by XRD, XPS , and TEM to study its physical and chemical properties. In addition to titanium-based photocatalysts, we have also researched zinc-base photocatalysts. Zinc-base photocatalysts show enhanced photocatalytic performance through combining with metals and nonmetals. Bismuth-based photocatalyst is a hot spot of research in recent years, and we present the doped bismuth-based photocatalysts modified by metal or nonmetal. Research shows that modified bismuth-based photocatalysts with metal or nonmetal is an efficient method to let its band gap narrow. Graphene has attracted the attention of scientist for its excellent performance, and we have studied the graphene supported titanium dioxide photocatalysts and its physical and chemical properties.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. R. Wang, X. Cai, F. Shen, Titanium dioxide hollow microspheres with mesoporous surface: superior adsorption performance for dye removal. Appl. Surf. Sci. 305, 352–358 (2014)

    Article  CAS  Google Scholar 

  2. J. Yu, L. Shi, One-pot hydrothermal synthesis and enhanced photocatalytic activity of trifluoroacetic acid modified titanium dioxide hollow microspheres. J. Mol. Catal. A: Chem. 326, 8–14 (2010)

    Article  CAS  Google Scholar 

  3. K. Qi, B. Cheng, J. Yu et al., Review on the improvement of the photocatalytic and antibacterial activities of ZnO. J. Alloy. Compd. 727, 792–820 (2017)

    Article  CAS  Google Scholar 

  4. S. Kuriakose, B. Satpati, S. Mohapatra, Enhanced photocatalytic activity of Co-doped ZnO nanodisks and nanorods prepared by a facile wet chemicalmethod. Phys. Chem. Chem. Phys. 16, 12741–12749 (2014)

    Article  PubMed  CAS  Google Scholar 

  5. A. Hui, J. Ma, J. Liu, Y. Bao, J. Zhang, Morphological evolution of Fe doped search in-shaped ZnO nanoparticles with enhanced photocatalytic activity. J. Alloys Compd. 696, 639–647 (2017)

    Article  CAS  Google Scholar 

  6. L.C.-K. Liau, J.-S. Huang, Energy-level variations of Cu-doped ZnO fabricated through sol-gel processing. J. Alloys Compd. 702, 153–160 (2017)

    Article  CAS  Google Scholar 

  7. H. Benhebal, M. Chaib, A. Leonard, S.D. Lambert, M. Crine, Photodegradation of phenol and benzoic acid by solegel-synthesized alkali metal-doped ZnO. Mater. Sci. Semicond. Proc. 15, 264–269 (2012)

    Article  CAS  Google Scholar 

  8. B. Subash, B. Krishnakumar, R. Velmurugan, M. Swaminathan, M. Shanthi, Synthesis of Ce co-doped AgeZnO photocatalyst with excellent performance for NBB dye degradation under natural sunlight illumination. Catal. Sci. Technol. 2, 2319–2326 (2012)

    Article  CAS  Google Scholar 

  9. J.-C. Sin, S.-M. Lam, K.-T. Lee, A.R. Mohamed, Preparation of rare earth-doped ZnO hierarchical micro/nanospheres and their enhanced photocatalytic activity under visible light irradiation. Ceram. Int. 40, 5431–5440 (2014)

    Article  CAS  Google Scholar 

  10. S. Sharma, S.K. Mehta, S.K. Kansal, N doped ZnO/C-dots nanoflowers as visible light driven photocatalyst for the degradation of malachite green dye in aqueous phase. J. Alloys Compd. 699, 323–333 (2017)

    Article  CAS  Google Scholar 

  11. J.B.M. Goodall, D. Illsley, R. Lines, N.M. Makwana, J.A. Darr, Structure-property-Composition relationships in doped zinc oxides: enhanced photocatalytic activity with rare earth dopants. ACS Comb. Sci. 17, 100–112 (2015)

    Article  PubMed  CAS  Google Scholar 

  12. D. Schelonka, J. Tolasz, V. Stengl, Doping of zinc oxide with selected first row transition metals for photocatalytic applications. Photochem. Photobiol. 91, 1071–1077 (2015)

    Article  PubMed  CAS  Google Scholar 

  13. Q. Zhang, J.-K. Liu, J.-D. Wang, H.-X. Luo, Y. Lu, X.-H. Yang, Atmospheric selfinduction synthesis and enhanced visible light photocatalytic performance of Fe3þ doped Ag-ZnO mesocrystals. Ind. Eng. Chem. Res. 53, 13236–13246 (2014)

    Article  CAS  Google Scholar 

  14. R. He, R.K. Hocking, T. Tsuzuki, Co-doped ZnO nanopowders: location of cobalt and reduction in photocatalytic activity. Mater. Chem. Phys. 132, 1035–1040 (2012)

    Article  CAS  Google Scholar 

  15. Q. Yin, R. Qiao, Z. Li, X.L. Zhang, L. Zhu, Hierarchical nanostructures of nickel-doped zinc oxide: morphology controlled synthesis and enhanced visible light photocatalytic activity. J. Alloys Compd. 618, 318–325 (2015)

    Article  CAS  Google Scholar 

  16. R. Ullah, J. Dutta, Photocatalytic degradation of organic dyes with manganese-doped ZnO nanoparticles. J. Hazard. Mater. 156, 194–200 (2008)

    Article  PubMed  CAS  Google Scholar 

  17. C.-J. Chang, T.-L. Yang, Y.-C. Weng, Synthesis and characterization of Cr-doped ZnO nanorod-array photocatalysts with improved activity. J. Solid State Chem. 214, 101–107 (2014)

    Article  CAS  Google Scholar 

  18. R. Slama, F. Ghribi, A. Houas, C. Barthou, L. El Mir, Visible photocatalytic properties of vanadium doped zinc oxide aerogel nanopowder. Thin Solid Films 519, 5792–5795 (2011)

    Article  CAS  Google Scholar 

  19. M. Fu, Y. Li, S. wu, P. Lu, J. Liu, F. Dong, Solegel preparation and enhanced photocatalytic performance of Cu-doped ZnO nanoparticles. Appl. Surf. Sci. 258, 1587–1591 (2011)

    Article  CAS  Google Scholar 

  20. N. Clament Sagaya Selvam, J.J. Vijaya, L.J. Kennedy, Effects of morphology and Zr doping on structural, optical, and photocatalytic properties of ZnO nanostructures. Ind. Eng. Chem. Res. 51, 16333–16345 (2012)

    Article  CAS  Google Scholar 

  21. D. Zhang, F. Zeng, Visible light-activated cadmium-doped ZnO nanostructured photocatalyst for the treatment of methylene blue dye. J. Mater. Sci. 47, 2155–2161 (2011)

    Article  CAS  Google Scholar 

  22. K. Kumar, M. Chitkara, I.S. Sandhu, D. Mehta, S. Kumar, Photocatalytic, optical and magnetic properties of Fe-doped ZnO nanoparticles prepared by chemical route. J. Alloys Compd. 588, 681–689 (2014)

    Article  CAS  Google Scholar 

  23. K. Selvam, M. Muruganandham, I. Muthuvel, M. Swaminathan, The influence of inorganic oxidants and metal ions on semiconductor sensitized photodegradation of 4-fluorophenol. Chem. Eng. J. 128, 51–57 (2007)

    Article  CAS  Google Scholar 

  24. L. Xu, Zhou Yang, Zijiun Wu, Zheng Gaige, J. He, Y. Zhou, Improved photocatalytic activity of nanocrystalline ZnO by coupling with CuO. J. Phys. Chem. Solids 106, 29–36 (2017)

    Article  CAS  Google Scholar 

  25. J. Iqbal, X. Liu, H. Zhu, Z.B. Wu, Y. Zhang, D. Yu, R. Yu, Raman and highlyultraviolet red-shifted near band-edge properties of LaCe-co-doped ZnO nanoparticles. Acta Mater. 57, 4790–4796 (2009)

    Article  CAS  Google Scholar 

  26. S. Anandan, A. Vinu, T. Mori, N. Gokulakrishnan, P. Srinivasu, V. Murugesan, K. Ariga, Photocatalytic degradation of 2, 4, 6-trichlorophenol using lanthanum doped ZnO in aqueous suspension. Catal. Commun. 8, 1377–1382 (2007)

    Article  CAS  Google Scholar 

  27. W. Zheng, Q. Miao, Y. Tang, W. Wei, J. Xu, X. Liu, Q. Qian, L. Xiao, B. Huang, Q. Chen, La(III)-doped ZnO/C nanofibers with coreeshell structure byelec-trospinning-calcination technology. Mater. Lett. 98, 94–97 (2013)

    Article  CAS  Google Scholar 

  28. M. Khatamian, A.A. Khandar, B. Divband, M. Haghighi, S. Ebrahimiasl, Heterogeneous photocatalytic degradation of 4-nitrophenol in aqueous suspension by Ln (La3+, Nd3+ or Sm3+) doped ZnO nanoparticles. J. Mol. Catal. AChem. 365, 120–127 (2012)

    Article  CAS  Google Scholar 

  29. V.H.-T. Thi, B.-K. Lee, Effective photocatalytic degradation of paracetamol using La-doped ZnO photocatalyst under visible light irradiation. Mater. Res. Bullet. 96, 171–182 (2017)

    Article  CAS  Google Scholar 

  30. K.-J. Kim, P.B. Kreider, C. Choi, C.-H. Chang, H.-G. Ahn, Visible-light-sensitive Na-doped p-type flower-like ZnO photocatalysts synthesized via a continuous flow microreactor. RSC Adv. 3, 12702–12710 (2013)

    Article  CAS  Google Scholar 

  31. A. Tabib, W. Bouslama, B. Sieber, A. Addad, H. Elhouichet, M. Ferid, R. Boukherroub, Structural and optical properties of Na doped ZnO nanocrystals: application to solar photocatalysis. Appl. Surf. Sci. 396, 1528–1538 (2017)

    Article  CAS  Google Scholar 

  32. D. Li, J.-F. Huang, L.-Y. Cao, H.-B. OuYang, J.-Y. Li, C.-Y. Yao, Microwave hydrothermal synthesis of Kþ doped ZnO nanoparticles with enhanced photocatalytic properties under visible-light. Mater. Lett. 118, 17–20 (2014)

    Article  CAS  Google Scholar 

  33. M. Yousefi, R. Azimirad, M. Amiri, A.Z. Moshfegh, Effect of annealing temperature on growth of Ce-ZnO nanocomposite thin films: X-ray photoelectron spectroscopy study. Thin Solid Films 520, 721–725 (2011)

    Article  CAS  Google Scholar 

  34. M. Rezaei, A. Habibi-Yangjeh, Microwave-assisted preparation of Ce-doped ZnO nanostructures as an efficient photocatalyst. Mater. Lett. 110, 53–56 (2013)

    Article  CAS  Google Scholar 

  35. V. Etacheri, R. Roshan, V. Kumar, Mg-doped ZnO nanoparticles for efficient sunlight-driven photocatalysis. ACS Appl. Mater. Interf. 4, 2717–2725 (2012)

    Article  CAS  Google Scholar 

  36. X. Qiu, L. Li, J. Zheng, J. Liu, X. Sun, G. Li, Origin of the enhanced photocatalytic activities of semiconductors: a case study of ZnO doped with Mg2þ. J. Phys. Chem. C 112, 12242–12248 (2008)

    Article  CAS  Google Scholar 

  37. A. Khataee, R. Darvishi Cheshmeh Soltani, Y. Hanifehpour, M. Safarpour, H. Gholipour Ranjbar, S.W. Joo, Synthesis and characterization of dysprosium-doped ZnO nanoparticles for photocatalysis of a textile dye under visible light irradiation. Ind. Eng. Chem. Res. 53, 1924–1932 (2014)

    Article  CAS  Google Scholar 

  38. P.V. Korake, A.N. Kadam, K.M. Garadkar, Photocatalytic activity of Eu3+-doped ZnO nanorods synthesized via microwave assisted technique. J. Rare Earths 32, 306–313 (2014)

    Article  CAS  Google Scholar 

  39. M. Samadi, M. Zirak, A. Naseri, E. Khorashadizade, A.Z. Moshfegh, Recent progress on doped ZnO nanostructures for visible-light photocatalysis. Thin Solid Films 605, 2–19 (2016)

    Article  CAS  Google Scholar 

  40. S.R. Kadam, V.R. Mate, R.P. Panmand, L.K. Nikam, M.V. Kulkarni, R.S. Sonawane, B.B. Kale, A green process for efficient lignin (biomass) degradation and hydrogen production via water splitting using nanostructured C, N, S-doped ZnO under solar light. RSC Adv. 4, 60626–60635 (2014)

    Article  CAS  Google Scholar 

  41. L.-C. Chen, Y.-J. Tu, Y.-S. Wang, R.-S. Kan, C.-M. Huang, Characterization and photoreactivity of N-, S-, and C-doped ZnO under UV and visible light illumination. J. Photochem. Photobiol. A 199, 170–178 (2008)

    Article  CAS  Google Scholar 

  42. W. Yu, J. Zhang, T. Peng, New insight into the enhanced photocatalytic activity of N-, C- and S-doped ZnO photocatalysts. App. Cat. B En. 181, 220–227 (2016)

    Article  CAS  Google Scholar 

  43. X. Chen, Titanium dioxide nanomaterials and their energy applications. Chin. J. Catal. 30, 839–851 (2009)

    Article  CAS  Google Scholar 

  44. X. Chen, S.S. Mao, Titanium dioxide nanomaterials: synthesis, properties, modifications, and application. Chem. Rev. 107(7), 2891–2959 (2007)

    Article  PubMed  CAS  Google Scholar 

  45. H. Zhang, Y. Song, Y. Sheng, H. Li, Z. Shi, X. Xu, H. Zou, EDTA-assisted fabrication of titanium dioxide core-shell microspheres with improved photocatalytic performance. Ceram. Int. 41, 247–252 (2015)

    Article  CAS  Google Scholar 

  46. N. Alenzi, W.-S. Liao, P.S. Cremer, V. Sanchez-Torres, T.K. Wood, C. Ehlig-Economides, Z. Cheng, Photoelectrochemical hydrogen production from water/methanol decomposition using Ag/titanium dioxide nanocomposite thin films. Int. J. Hydrog. Energy 35, 11768–11775 (2010)

    Article  CAS  Google Scholar 

  47. S.-S. Chen, H.-C. Hsi, S.-H. Nian, C.-H. Chiu, Synthesis of N-doped titanium dioxide photocatalyst for low-concentration elemental mercury removal under various gas conditions. Appl. Catal. B Environ. 160–161, 558–565 (2014)

    Article  CAS  Google Scholar 

  48. H. Li, C.-Y. Wu, Y. Li, J. Zhang, Superior activity of MnOx -CeO2/titanium dioxide catalyst for catalytic oxidation of elemental mercury at low flue gas temperatures. Appl. Catal. B: Environ. 111-112, 381–388 (2012)

    Article  CAS  Google Scholar 

  49. J. Yang, Q. Yang, J. Sun, Q. Liu, D. Zhao, W. Gao, L. Liu, Effects of mercury oxidation on V2O5 -WO3/titanium dioxide catalyst properties in NH3 -SCR process. Catal. Commun. 59, 78–82 (2015)

    Article  CAS  Google Scholar 

  50. H. Li, C.-Y. Wu, Y. Li, L. Li, Y. Zhao, J. Zhang, Impact of SO2 on elemental mercury oxidation over CeO2-titanium dioxide catalyst. Chem. Eng. J. 219, 319–326 (2013)

    Article  CAS  Google Scholar 

  51. S. Xu, A.J. Du, J. Liu, J. Ng, D.D. Sun, Highly efficient CuO incorporated titanium dioxide nanotube photocatalyst for hydrogen production from water. Int. J. Hydrog. Energy 36, 6560–6568 (2011)

    Article  CAS  Google Scholar 

  52. L. Pan, S. Wang, J. Xie, L. Wang, X. Zhang, J.J. Zou, Constructing titanium dioxide p-n homojunction for photoelectrochemical and photocatalytic hydrogen generation. Nano Energy 28, 296–303 (2016)

    Article  CAS  Google Scholar 

  53. D.O. Scanlon, C.W. Dunnill, J. Buckeridge, S.A. Shevlin, A.J. Logsdail, S.M. Woodley, C.R. Catlow, M.J. Powell, R.G. Palgrave, I.P. Parkin, Band alignment of rutile and anatase titanium dioxide. Nature Mater. 12, 798–801 (2013)

    Article  CAS  Google Scholar 

  54. W. Zhou, W. Li, J.Q. Wang, Y. Qu, Y. Yang, Y. Xie, K. Zhang, L. Wang, H. Fu, D. Zhao, Ordered mesoporous black titanium dioxide as highly efficient hydrogen evolution photocatalyst. J. Am. Chem. Soc. 136, 9280–9283 (2014)

    Article  PubMed  CAS  Google Scholar 

  55. C.H. Lee, J.L. Shie, Y.T. Yang, C.Y. Chang, Photoelectrochemical characteristics, photodegradation and kinetics of metal and non-metal elements co-doped photocatalyst for pollution removal. Chem. Eng. J. 303, 477–488 (2016)

    Article  CAS  Google Scholar 

  56. J. Zhang, X. Jin, P.I. Moralesguzman, X. Yu, H. Liu, H. Zhang, L. Razzari, J.P. Claverie, Engineering the absorption and field enhancement properties of Au-titanium dioxide nanohybrids via whispering gallery mode resonances for photocatalytic water splitting. ACS Nano 10, 4496–4503 (2016)

    Article  PubMed  CAS  Google Scholar 

  57. M. Dahl, Y. Liu, Y. Yin, Composite titanium dioxide nanomaterials. Chem. Rev. 114, 9853–9889 (2014)

    Article  PubMed  CAS  Google Scholar 

  58. J. Sun, X. Li, Q. Zhao, J. Ke, D. Zhang, Novel V2O5/BiVO4/titanium dioxide nanocomposites with high visible-light-induced photocatalytic activity for the degradation of toluene. J. Phys. Chem. C 118, 10113–10121 (2014)

    Article  CAS  Google Scholar 

  59. S. Shen, S.A. Lindley, X. Chen, J.Z. Zhang, Hematite heterostructures for photoelectrochemical water splitting: rational materials design and charge carrier dynamics. Energy Environ. Sc. 9, 2744–2755 (2016)

    Article  CAS  Google Scholar 

  60. H. Huang, K. Xiao, Y. He, T. Zhang, F. Dong, X. Du, Y. Zhang, In situ assembly of BiOI@Bi12O17Cl2 p-n junction: charge induced unique front-lateral surfaces coupling heterostructure with high exposure of BiOI 001 active facets for robust and nonselective photocatalysis. Appl. Catal. B Environ. 199, 75–86 (2016)

    Article  CAS  Google Scholar 

  61. H. Huang, X. Han, X. Li, S. Wang, P.K. Chu, Y. Zhang, Fabrication of multiple heterojunctions with tunable visible-light-active photocatalytic reactivity in BiOBr-BiOI full-range composites based on microstructure modulation and band structures. ACS Appl. Mater. Interfaces. 7, 482–492 (2015)

    Article  PubMed  CAS  Google Scholar 

  62. L. Xie, L. Ping, Z. Zheng, S. Weng, J. Huang, Morphology engineering of V2O5/titanium dioxide nanocomposites with enhanced visible light-driven photofunctions for arsenic removal. Appl. Catal. B Environ. 184, 347–354 (2016)

    Article  CAS  Google Scholar 

  63. F. Ren, H. Li, Y. Wang, J. Yang, Enhanced photocatalytic oxidation of propylene over V-doped titanium dioxide photocatalyst: Reaction mechanism between V5+ and single-electron-trapped oxygen vacancy. Appl. Catal. B Environ. 176–177, 160–172 (2015)

    Article  CAS  Google Scholar 

  64. Z. Wu, F. Dong, Y. Liu, H. Wang, Enhancement of the visible light photocatalytic performance of C-doped titanium dioxide by loading with V2O5. Catal. Commun. 11, 82–86 (2009)

    Article  CAS  Google Scholar 

  65. Y. Wang, Y.R. Su, L. Qiao, L.X. Liu, Q. Su, C.Q. Zhu, X.Q. Liu, Synthesis of one-dimensional titanium dioxide/V2O5 branched heterostructures and their visible light photocatalytic activity towards Rhodamine B. Nanotechnology 22, 225702–225710 (2011)

    Article  PubMed  CAS  Google Scholar 

  66. Y. Duan, M. Zhang, L. Wang, F. Wang, L. Yang, X. Li, C. Wang, Plasmonic Ag-titanium dioxide-x nanocomposites for the photocatalytic removal of NO under visible light with high selectivity: the role of oxygen vacancies. Appl. Catal. B Environ. 204, 67–77 (2016)

    Article  CAS  Google Scholar 

  67. V. Gombac, L. Sordelli, T. Montini, J.J. Delgado, A. Adamski, G. Adami, M. Cargnello, S. Bernal, P. Fornasiero, CuOx-titanium dioxide photocatalysts for H2 production from ethanol and glycerol solutions. J. Phys. Chem. A 114, 3916–3925 (2009)

    Article  CAS  Google Scholar 

  68. W. Xu, H. Wang, X. Zhou, T. Zhu, CuO/titanium dioxide catalysts for gas-phase Hg0 catalytic oxidation. Chem. Eng. J. 243, 380–385 (2014)

    Article  CAS  Google Scholar 

  69. V. Trevisan, A. Olivo, F. Pinna, M. Signoretto, F. Vindigni, G. Cerrato, C.L. Bianchi, C-N/titanium dioxide photocatalysts: Effect of co-doping on the catalytic performance under visible light. Appl. Catal. B Environ. 160–161, 152–160 (2014)

    Article  CAS  Google Scholar 

  70. L. Zhang, M.S. Tse, O.K. Tan, Y.X. Wang, M. Han, Facile fabrication and characterization of multi-type carbon-doped titanium dioxide for visible light-activated photocatalytic mineralization of gaseous toluene. J. Mater. Chem. A 1, 4497–4507 (2013)

    Article  CAS  Google Scholar 

  71. W. Zhao, Y. Wang, Y. Yang, J. Tang, Y. Yang, Carbon spheres supported visible-light-driven CuO-BiVO4 heterojunction: preparation, characterization, and photocatalytic properties. Appl. Catal. B: Environ. 115–116, 90–99 (2012)

    Article  CAS  Google Scholar 

  72. S. Xu, A.J. Du, J. Liu, J. Ng, D.D. Sun, Highly efficient CuO incorporated titanium dioxide nanotube photocatalyst for hydrogen production from water. Int. J. Hydrogen Energy 36, 6560–6568 (2011)

    Article  CAS  Google Scholar 

  73. J. Yu, Y. Hai, M. Jaroniec, Photocatalytic hydrogen production over CuO-modified titania. J. Colloid Interface Sci. 357, 223–228 (2011)

    Article  PubMed  CAS  Google Scholar 

  74. J. Bandara, C.P.K. Udawatta, C.S.K. Rajapakse, Highly stable CuO incorporated titanium dioxide catalyst for photo-catalytic hydrogen production from H2O. Photochem. Photobiol. Sci. 4, 857–861 (2005)

    Article  PubMed  CAS  Google Scholar 

  75. D. Barreca, P. Fornasiero, A. Gasparotto, V. Gombac, C. Maccato, T. Montini, E. Tondello, The potential of supported Cu2O and CuO nanosystems in photocatalytic H2 production. Chemsuschem 2, 230–233 (2009)

    Article  PubMed  CAS  Google Scholar 

  76. M. Khraisheh, L. Wu, A.A.H. Al-Muhtaseb, M.A. Al-Ghouti, Photocatalytic disinfection of Escherichia coli using titanium dioxide, P25 and Cu-doped titanium dioxide. J. Ind. Eng. Chem. 28, 369–376 (2015)

    Article  CAS  Google Scholar 

  77. H. Zangeneh, A.A.L. Zinatizadeh, M. Habibi, M. Akia, M.H. Isa, Photocatalytic oxidation of organic dyes and pollutants in wastewater using different modified titanium dioxides: a comparative review. J. Ind. Eng. Chem. 26, 1–36 (2015)

    Article  CAS  Google Scholar 

  78. A. Yousef, M.M. El-Halwany, N.A.M. Barakat, M.N. Al-Maghrabi, H.Y. Kim, CuO-doped titanium dioxide nanofibers as potential photocatalyst and antimicrobial agent. J. Ind. Eng. Chem. 26, 251–258 (2015)

    Article  CAS  Google Scholar 

  79. J. Jia, D. Li, J. Wan, X. Yu, Characterization and mechanism analysis of graphite/C-doped titanium dioxide composite for enhanced photocatalytic performance. J. Ind. Eng. Chem. 33, 162–169 (2015)

    Article  CAS  Google Scholar 

  80. M. Kong, Y. Li, X. Chen, T. Tian, P. Fang, F. Zheng, X. Zhao, Tuning the relative concentration ratio of bulk defects to surface defects in titanium dioxide nanocrystals leads to high photocatalytic efficiency. J. Am. Chem. Soc. 133, 16414–16417 (2011)

    Article  PubMed  CAS  Google Scholar 

  81. Y. Xu, C. Zhang, L. Zhang, X. Zhang, H. Yao, J. Shi, Pd-catalyzed instant hydrogenation of titanium dioxide with enhanced photocatalytic performance. Energy Environ. Sci. 9, 2410–2417 (2016)

    Article  CAS  Google Scholar 

  82. H. Park, H. Kim, G. Moon, W. Choi, Photoinduced charge transfer processes in solar photocatalysis based on modified titanium dioxide. Energy Environ. Sci. 9, 411–433 (2015)

    Article  CAS  Google Scholar 

  83. C. Li, C. Koenigsmann, W. Ding, B. Rudshteyn, K.R. Yang, K.P. Regan, S.J. Konezny, V.S. Batista, G.W. Brudvig, C.A. Schmuttenmaer, Facet-dependent photoelectrochemical performance of titanium dioxide nanostructures: an experimental and computational study. J. Am. Chem. Soc. 137, 1520–1529 (2015)

    Article  PubMed  CAS  Google Scholar 

  84. J. Yun, S. Hwang, J. Jang, Fabrication of Au@Ag core/shell nanoparticles decorated titanium dioxide hollow structure for efficient light-harvesting in dye-sensitized solar cells. ACS Appl. Mater. Interfaces. 7, 2055–2063 (2015)

    Article  PubMed  CAS  Google Scholar 

  85. W.J. Lee, M.L. Ju, S.T. Kochuveedu, T.H. Han, Y.J. Hu, M. Park, J.M. Yun, J. Kwon, K. No, H.K. Dong, Biomineralized N-doped CNT/titanium dioxide core/shell nanowires for visible light photocatalysis. ACS Nano 6, 935–943 (2012)

    Article  PubMed  CAS  Google Scholar 

  86. R. Chalasani, S. Vasudevan, Cyclodextrin-functionalized Fe3O4@titanium dioxide: reusable, magnetic nanoparticles for photocatalytic degradation of endocrine-disrupting chemicals in water supplies. ACS Nano 7, 4093–4104 (2013)

    Article  PubMed  CAS  Google Scholar 

  87. Y.C. Chen, Y.C. Pu, Y.J. Hsu, Interfacial charge carrier dynamics of the three-component In2O3-titanium dioxide-Pt heterojunction system. J. Phys. Chem. C 116, 2967–2975 (2012)

    Article  CAS  Google Scholar 

  88. F. Lei, Y. Sun, K. Liu, S. Gao, L. Liang, B. Pan, Y. Xie, Oxygen vacancies confined in ultrathin indium oxide porous sheets for promoted visible-light water splitting. J. Am. Chem. Soc. 136, 6826–6829 (2014)

    Article  PubMed  CAS  Google Scholar 

  89. J. Mu, B. Chen, M. Zhang, Z. Guo, Z. Peng, Z. Zhang, Y. Sun, C. Shao, Y. Liu, Enhancement of the visible-light photocatalytic activity of In2O3-titanium dioxide nanofiber heteroarchitectures. ACS Appl. Mater. Interfaces. 4, 424–430 (2016)

    Article  CAS  Google Scholar 

  90. R. Asahi, T. Morikawa, H. Irie, T. Ohwaki, Nitrogen-doped titanium dioxide as visible-light-sensitive photocatalyst: designs, developments, and prospects. Chem. Rev. 114, 9824–9852 (2014)

    Article  PubMed  CAS  Google Scholar 

  91. J. Zhang, N.M. Vasei, Y. Sang, H. Liu, J.P. Claverie, Titanium dioxide@Carbon photocatalysts: the effect of carbon thickness on catalysis. ACS Appl. Mater. Interfaces. 2, 1903–1912 (2015)

    Google Scholar 

  92. S.S. Dr, H.K. Dr, Daylight photocatalysis by carbon-modified titanium dioxide. Angew. Chem. Int. Ed. 42, 4908–4911 (2003)

    Article  CAS  Google Scholar 

  93. W. Jiang, C.E. Li, X. Chen, J. Zhang, L. Zhao, T. Huang, T. Hu, C. Zhang, B. Ni, X. Zhou, Photocatalytic oxidation of gas-phase Hg0 by carbon spheres supported visible-light-driven CuO-titanium dioxide. J. Indust. Eng. Chem. 46, 416–425 (2016)

    Google Scholar 

  94. S. Chala, K. Wetchakun, S. Phanichphant, B. Inceesungvorn, N. Wetchakun, Enhanced visible-light-response photocatalytic degradation of methylene blue on Fe-loaded BiVO4 photocatalyst. J. Alloy. Compd. 597, 129–135 (2014)

    Article  CAS  Google Scholar 

  95. X. Gao, F. Fu, W. Li, Photocatalytic degradation of phenol over Cu loading BiVO4 metal composite oxides under visible light irradiation. Physica B: Condensed Matter. 412, 26–31 (2013)

    Article  CAS  Google Scholar 

  96. H. Xu, C. Wu, H. Li, J. Chu, G. Sun, Y. Xu, Synthesis, characterization and photocatalytic activities of rare earth-loaded BiVO4 catalysts. Appl. Surf. Sci. 256(3), 597–602 (2009)

    Article  CAS  Google Scholar 

  97. A. Zhang, J. Zhang, Effects of europium doping on the photocatalytic behavior of BiVO4. J. Hazard. Mater. 173(1/2/3), 265–272 (2010)

    Article  PubMed  CAS  Google Scholar 

  98. J. Li, Z. Guo, H. Liu, J. Du, Z. Zhu, Two-step hydrothermal process for synthesis of F-doped BiVO4 spheres with enhanced photocatalytic activity. J. Alloy. Compd. 581, 40–45 (2013)

    Article  CAS  Google Scholar 

  99. R. Leary, A. Westwood, Carbonaceous nanomaterials for the enhancement of titanium dioxide photocatalysis. Carbon 49, 741–772 (2011)

    Article  CAS  Google Scholar 

  100. A. Fujishima, K. Hashimoto, T. Watanabe, Titanium dioxide photocatalysis and related surface phenomena. Surf. Sci. Rep. 63, 515–582 (2008)

    Article  CAS  Google Scholar 

  101. K. Hashimoto, H. Irie, A. Fujishima, Photocatalysis: a historical overview and future prospects. Jpn. J. Appl. Phys. 44, 8269 (2005)

    Article  CAS  Google Scholar 

  102. X. Chen, S.S. Mao, Titanium dioxide nanomaterials synthesis, properties, modifications, and applications. Chem. Rev. 107, 2891–2959 (2007)

    Article  PubMed  CAS  Google Scholar 

  103. A. Heller, Chemistry and applications of photocatalytic oxidation of thin organic films. Acc. Chem. Res. 28, 503–508 (1995)

    Article  CAS  Google Scholar 

  104. Z. Zhang, C. Shao, L. Zhang, X. Li, Y. Liu, Electrospun nanofibers of V-doped titanium dioxide with high photocatalytic activity. J. Colloid Interface Sci. 351, 57–62 (2010)

    Article  PubMed  CAS  Google Scholar 

  105. M.-Z. Ge, S.-H. Li, J.-Y. Huang, K.-Q. Zhang, S.S. Al-Deyab, Y.-K. Lai, Titanium dioxide nanotube arrays loaded with reduced graphene oxide films: facile hybridization and promising photocatalytic application. J. Mater. Chem. A 3, 3491–3499 (2015)

    Article  CAS  Google Scholar 

  106. Q. Zhang, J.-B. Joo, Z. Lu, M. Dahl, D.Q. Oliveira, M. Ye, Y. Yin, Self-assembly and photocatalysis of mesoporous titanium dioxide nanocrystal clusters. Nano Res. 4, 103–114 (2011)

    Article  CAS  Google Scholar 

  107. B.J. Ji, Q. Zhang, M. Dahl, I. Lee, J. Goebl, F. Zaera, Y. Yin, Control of the nanoscale crystallinity in mesoporous titanium dioxide shells for enhanced photocatalytic activity. Energy Environ. Sci. 5, 6321–6327 (2012)

    Article  Google Scholar 

  108. I. Robel, B.A. Bunker, P.V. Kamat, Single-walled carbon nanotube-CdS nanocomposites as light-harvesting assemblies: photoinduced charge-transfer interactions. Adv. Mater. 17, 2458–2463 (2005)

    Article  CAS  Google Scholar 

  109. A.K. Geim, K.S. Novoselov, NS the rise of graphene. Nat. Mater. 6, 183–191 (2007)

    Article  PubMed  CAS  Google Scholar 

  110. H. Wang, J.T. Robinson, G. Diankov, H. Dai, Nanocrystal growth on graphene with various degrees of oxidation. J. Am. Chem. Soc. 132, 3270–3271 (2010)

    Article  PubMed  CAS  Google Scholar 

  111. J. Zhang, Z. Zhu, Y. Tang, X. Feng, Graphene encapsulated hollow titanium dioxide nanospheres: efficient synthesis and enhanced photocatalytic activity. J. Mater. Chem. A 1, 3752–3756 (2013)

    Article  CAS  Google Scholar 

  112. K. Woan, G. Pyrgiotakis, W. Sigmund, Photocatalytic carbon-nanotube-titanium dioxide Composites. Adv. Mater. 21, 2233–2239 (2009)

    Article  CAS  Google Scholar 

  113. H. Zhang, X. Lv, Y. Li, Y. Wang, J. Li, P25-graphene composite as a high performance photocatalyst. ACS Nano 4, 380–386 (2009)

    Article  CAS  Google Scholar 

  114. C.H. Kim, B.-H. Kim, K.S. Yang, Titanium dioxide nanoparticles loaded on graphene/carbon composite nanofibers by electrospinning for increased photocatalysis. Carbon 50, 2472–2481 (2012)

    Article  CAS  Google Scholar 

  115. B.C. Brodie, On the Atomic Weight of Graphite. Philos. Trans. R. Soc. Lond. 249–259 (1859)

    Article  Google Scholar 

  116. L. Staudenmaier, Verfahren zur Darstellung der Graphitsäure. Ber. Dtsch. Chem. Ges. 31, 1481–1487 (1898)

    Article  CAS  Google Scholar 

  117. W.S. Hummers Jr., R.E. Offeman, Functionalized graphene and graphene oxide: materials synthesis and electronic applications. J. Am. Chem. Soc. 80, 1339 (1958)

    Article  CAS  Google Scholar 

  118. C. Chen, W. Cai, M. Long, B. Zhou, Y. Wu, D. Wu, Y. Feng, Synthesis of visible-light responsive graphene oxide/titanium dioxide composites with p/n heterojunction. ACS Nano 4, 6425–6432 (2010)

    Article  PubMed  CAS  Google Scholar 

  119. G. Jiang, Z. Lin, C. Chen, L. Zhu, Q. Chang, N. Wang, W. Wei, H. Tang, Titanium dioxide nanoparticles assembled on graphene oxide nanosheets with high photocatalytic activity for removal of pollutants. Carbon 49, 2693–2701 (2011)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiang Wu .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Shanghai Jiao Tong University Press and Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wu, J., Ren, J., Pan, W., Lu, P., Qi, Y. (2019). Modified Photocatalysts. In: Photo-catalytic Control Technologies of Flue Gas Pollutants. Energy and Environment Research in China. Springer, Singapore. https://doi.org/10.1007/978-981-10-8750-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-8750-9_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-8748-6

  • Online ISBN: 978-981-10-8750-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics