Skip to main content

Plugging the Leak in Dengue Shock

  • Chapter
  • First Online:
Dengue and Zika: Control and Antiviral Treatment Strategies

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1062))

Abstract

Recent structural and functional advances provide fresh insight into the biology of the dengue virus non-structural protein, NS1 and suggest new avenues of research. The work of our lab and others have shown that the secreted, hexameric form of NS1 has a systemic toxic effect, inducing inflammatory cytokines and acting directly on endothelial cells to produce the hallmark of dengue disease, vascular leak. We also demonstrated that NS1 exerts its toxic activity through recognition by the innate immune receptor TLR4, mimicking the bacterial endotoxin LPS. This monograph covers the background underpinning these new findings and discusses new avenues for antiviral and vaccine intervention.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akashi S, Ogata H, Kirikae F, Kirikae T, Kawasaki K, Nishijima M, Shimazu R, Nagai Y, Fukudome K, Kimoto M, Miyake K (2000) Regulatory roles for CD14 and phosphatidylinositol in the signaling via toll-like receptor 4-MD-2. Biochem Biophys Res Commun 268(1):172–177. https://doi.org/10.1006/bbrc.2000.2089

    Article  PubMed  CAS  Google Scholar 

  2. Akey DL, Brown WC, Dutta S, Konwerski J, Jose J, Jurkiw TJ, DelProposto J, Ogata CM, Skiniotis G, Kuhn RJ, Smith JL (2014) Flavivirus NS1 structures reveal surfaces for associations with membranes and the immune system. Science 343(6173):881–885. https://doi.org/10.1126/science.1247749

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Akey DL, Brown WC, Jose J, Kuhn RJ, Smith JL (2015) Structure-guided insights on the role of NS1 in flavivirus infection. BioEssays 37(5):489–494. https://doi.org/10.1002/bies.201400182

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Alcon S, Talarmin A, Debruyne M, Falconar A, Deubel V, Flamand M (2002) Enzyme-linked immunosorbent assay specific to dengue virus type 1 nonstructural protein NS1 reveals circulation of the antigen in the blood during the acute phase of disease in patients experiencing primary or secondary infections. J Clin Microbiol 40(2):376–381

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Aye KS, Charngkaew K, Win N, Wai KZ, Moe K, Punyadee N, Thiemmeca S, Suttitheptumrong A, Sukpanichnant S, Prida M, Halstead SB (2014) Pathologic highlights of dengue hemorrhagic fever in 13 autopsy cases from Myanmar. Hum Pathol 45(6):1221–1233. https://doi.org/10.1016/j.humpath.2014.01.022

    Article  PubMed  Google Scholar 

  6. Balsitis SJ, Coloma J, Castro G, Alava A, Flores D, McKerrow JH, Beatty PR, Harris E (2009) Tropism of dengue virus in mice and humans defined by viral nonstructural protein 3-specific immunostaining. Am J Trop Med Hyg 80(3):416–424

    Article  PubMed  Google Scholar 

  7. Beatty PR, Puerta-Guardo H, Killingbeck SS, Glasner DR, Hopkins K, Harris E (2015) Dengue virus NS1 triggers endothelial permeability and vascular leak that is prevented by NS1 vaccination. Sci Transl Med 7(304):304ra141. https://doi.org/10.1126/scitranslmed.aaa3787

    Article  PubMed  CAS  Google Scholar 

  8. Bhamarapravati N, Tuchinda P, Boonyapaknavik V (1967) Pathology of Thailand haemorrhagic fever: a study of 100 autopsy cases. Ann Trop Med Parasitol 61(4):500–510

    Article  PubMed  CAS  Google Scholar 

  9. Bokisch VA, Top FH Jr, Russell PK, Dixon FJ, Muller-Eberhard HJ (1973) The potential pathogenic role of complement in dengue hemorrhagic shock syndrome. N Engl J Med 289(19):996–1000. https://doi.org/10.1056/nejm197311082891902

    Article  PubMed  CAS  Google Scholar 

  10. Brandt WE, Chiewslip D, Harris DL, Russell PK (1970) Partial purification and characterization of a dengue virus soluble complement-fixing antigen. J Immunol 105(6):1565–1568

    PubMed  CAS  Google Scholar 

  11. Brown WC, Akey DL, Konwerski JR, Tarrasch JT, Skiniotis G, Kuhn RJ, Smith JL (2016) Extended surface for membrane association in Zika virus NS1 structure. Nat Struct Mol Biol 23(9):865–867. https://doi.org/10.1038/nsmb.3268. http://www.nature.com/nsmb/journal/v23/n9/abs/nsmb.3268.html#supplementary-information

    Article  CAS  Google Scholar 

  12. Calvert AE, Huang CY, Kinney RM, Roehrig JT (2006) Non-structural proteins of dengue 2 virus offer limited protection to interferon-deficient mice after dengue 2 virus challenge. J Gen Virol 87(Pt 2):339–346

    Article  PubMed  CAS  Google Scholar 

  13. Carr JM, Hocking H, Bunting K, Wright PJ, Davidson A, Gamble J, Burrell CJ, Li P (2003) Supernatants from dengue virus type-2 infected macrophages induce permeability changes in endothelial cell monolayers. J Med Virol 69(4):521–528. https://doi.org/10.1002/jmv.10340

    Article  PubMed  Google Scholar 

  14. Chen J, Ng MM, Chu JJ (2015) Activation of TLR2 and TLR6 by dengue NS1 protein and its implications in the Immunopathogenesis of dengue virus infection. PLoS Pathog 11(7):e1005053. https://doi.org/10.1371/journal.ppat.1005053

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Chen HR, Chuang YC, Lin YS, Liu HS, Liu CC, Perng GC, Yeh TM (2016) Dengue virus nonstructural protein 1 induces vascular leakage through macrophage migration inhibitory factor and autophagy. Plos Negl Trop Dis 10(7) ARTN e0004828 151371/journal.pntd.0004828

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Cheng HJ, Lin CF, Lei HY, Liu HS, Yeh TM, Luo YH, Lin YS (2009) Proteomic analysis of endothelial cell autoantigens recognized by anti-dengue virus nonstructural protein 1 antibodies. Exp Biol Med 234(1):63–73

    Article  CAS  Google Scholar 

  17. Chung KM, Nybakken GE, Thompson BS, Engle MJ, Marri A, Fremont DH, Diamond MS (2006) Antibodies against West Nile virus nonstructural protein NS1 prevent lethal infection through fc gamma receptor-dependent and -independent mechanisms. J Virol 80(3):1340–1351. https://doi.org/10.1128/jvi.80.3.1340-1351.2006

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Chung KM, Thompson BS, Fremont DH, Diamond MS (2007) Antibody recognition of cell surface-associated NS1 triggers Fc-gamma receptor-mediated phagocytosis and clearance of West Nile virus-infected cells. J Virol 81(17):9551–9555. doi:JVI.00879-07 [pii] 10.1128/JVI.00879-07

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Costa SM, Azevedo AS, Paes MV, Sarges FS, Freire MS, Alves AM (2007) DNA vaccines against dengue virus based on the ns1 gene: the influence of different signal sequences on the protein expression and its correlation to the immune response elicited in mice. Virology 358(2):413–423

    Article  PubMed  CAS  Google Scholar 

  20. Couvelard A, Marianneau P, Bedel C, Drouet MT, Vachon F, Henin D, Deubel V (1999) Report of a fatal case of dengue infection with hepatitis: demonstration of dengue antigens in hepatocytes and liver apoptosis. Hum Pathol 30(9):1106–1110

    Article  PubMed  CAS  Google Scholar 

  21. Crabtree MB, Kinney RM, Miller BR (2005) Deglycosylation of the NS1 protein of dengue 2 virus, strain 16681: construction and characterization of mutant viruses. Arch Virol 150(4):771–786. https://doi.org/10.1007/s00705-004-0430-8

    Article  PubMed  CAS  Google Scholar 

  22. Crooks AJ, Lee JM, Dowsett AB, Stephenson JR (1990) Purification and analysis of infectious virions and native non-structural antigens from cells infected with tick-borne encephalitis virus. J Chromatogr 502(1):59–68

    Article  PubMed  CAS  Google Scholar 

  23. Crooks AJ, Lee JM, Easterbrook LM, Timofeev AV, Stephenson JR (1994) The NS1 protein of tick-borne encephalitis virus forms multimeric species upon secretion from the host cell. J Gen Virol 75(Pt 12):3453–3460. https://doi.org/10.1099/0022-1317-75-12-3453

    Article  PubMed  CAS  Google Scholar 

  24. Dalgarno L, Trent DW, Strauss JH, Rice CM (1986) Partial nucleotide sequence of the Murray Valley encephalitis virus genome. Comparison of the encoded polypeptides with yellow fever virus structural and non-structural proteins. J Mol Biol 187(3):309–323. doi: 0022-2836(86)90435-3 [pii]

    Article  PubMed  CAS  Google Scholar 

  25. Daubeuf B, Mathison J, Spiller S, Hugues S, Herren S, Ferlin W, Kosco-Vilbois M, Wagner H, Kirschning CJ, Ulevitch R, Elson G (2007) TLR4/MD-2 monoclonal antibody therapy affords protection in experimental models of septic shock. J Immunol 179(9):6107–6114

    Article  PubMed  CAS  Google Scholar 

  26. Dejnirattisai W, Wongwiwat W, Supasa S, Zhang X, Dai X, Rouvinski A, Jumnainsong A, Edwards C, Quyen NTH, Duangchinda T, Grimes JM, Tsai WY, Lai CY, Wang WK, Malasit P, Farrar J, Simmons CP, Zhou ZH, Rey FA, Mongkolsapaya J, Screaton GR (2015) A new class of highly potent, broadly neutralizing antibodies isolated from viremic patients infected with dengue virus. Nat Immunol 16(2):170–177. https://doi.org/10.1038/ni.3058

    Article  PubMed  CAS  Google Scholar 

  27. Dhawan R, Khanna M, Chaturvedi UC, Mathur A (1990) Effect of dengue virus-induced cytotoxin on capillary permeability. J Exp Pathol (Oxford) 71(1):83–88

    CAS  Google Scholar 

  28. Diamond MS, Pierson TC, Fremont DH (2008) The structural immunology of antibody protection against West Nile virus. Immunol Rev 225:212–225

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Dunn-Siegrist I, Leger O, Daubeuf B, Poitevin Y, Depis F, Herren S, Kosco-Vilbois M, Dean Y, Pugin J, Elson G (2007) Pivotal involvement of Fcgamma receptor IIA in the neutralization of lipopolysaccharide signaling via a potent novel anti-TLR4 monoclonal antibody 15C1. J Biol Chem 282(48):34817–34827. https://doi.org/10.1074/jbc.M706440200

    Article  PubMed  CAS  Google Scholar 

  30. Edeling MA, Diamond MS, Fremont DH (2014) Structural basis of Flavivirus NS1 assembly and antibody recognition. Proc Natl Acad Sci U S A 111(11):4285–4290. https://doi.org/10.1073/pnas.1322036111

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Falconar AK (1997) The dengue virus nonstructural-1 protein (NS1) generates antibodies to common epitopes on human blood clotting, integrin/adhesin proteins and binds to human endothelial cells: potential implications in haemorrhagic fever pathogenesis. Arch Virol 142(5):897–916

    Article  PubMed  CAS  Google Scholar 

  32. Falconar AK (2007) Antibody responses are generated to immunodominant ELK/KLE-type motifs on the nonstructural-1 glycoprotein during live dengue virus infections in mice and humans: implications for diagnosis, pathogenesis, and vaccine design. Clin Vaccine Immunol 14(5):493–504

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Falgout B, Chanock R, Lai CJ (1989) Proper processing of dengue virus nonstructural glycoprotein NS1 requires the N-terminal hydrophobic signal sequence and the downstream nonstructural protein NS2a. J Virol 63(5):1852–1860

    PubMed  PubMed Central  CAS  Google Scholar 

  34. Falgout B, Bray M, Schlesinger JJ, Lai CJ (1990) Immunization of mice with recombinant vaccinia virus expressing authentic dengue virus nonstructural protein NS1 protects against lethal dengue virus encephalitis. J Virol 64(9):4356–4363

    PubMed  PubMed Central  CAS  Google Scholar 

  35. Flamand M, Megret F, Mathieu M, Lepault J, Rey FA, Deubel V (1999) Dengue virus type 1 nonstructural glycoprotein NS1 is secreted from mammalian cells as a soluble hexamer in a glycosylation-dependent fashion. J Virol 73(7):6104–6110

    PubMed  PubMed Central  CAS  Google Scholar 

  36. Fort MM, Mozaffarian A, Stover AG, Correia Jda S, Johnson DA, Crane RT, Ulevitch RJ, Persing DH, Bielefeldt-Ohmann H, Probst P, Jeffery E, Fling SP, Hershberg RM (2005) A synthetic TLR4 antagonist has anti-inflammatory effects in two murine models of inflammatory bowel disease. J Immunol 174(10):6416–6423

    Article  PubMed  CAS  Google Scholar 

  37. Gibson CA, Schlesinger JJ, Barrett AD (1988) Prospects for a virus non-structural protein as a subunit vaccine. Vaccine 6(1):7–9

    Article  PubMed  CAS  Google Scholar 

  38. Goodall KJ, Poon IK, Phipps S, Hulett MD (2014) Soluble heparan sulfate fragments generated by heparanase trigger the release of pro-inflammatory cytokines through TLR-4. https://doi.org/10.1371/journal.pone.0109596. PMID: 25295599

    Google Scholar 

  39. Gould EA, Buckley A, Barrett AD, Cammack N (1986) Neutralizing (54K) and non-neutralizing (54K and 48K) monoclonal antibodies against structural and non-structural yellow fever virus proteins confer immunity in mice. J Gen Virol 67(Pt 3):591–595

    Article  PubMed  CAS  Google Scholar 

  40. Gutsche I, Coulibaly F, Voss JE, Salmon J, d'Alayer J, Ermonval M, Larquet E, Charneau P, Krey T, Megret F, Guittet E, Rey FA, Flamand M (2011) Secreted dengue virus nonstructural protein NS1 is an atypical barrel-shaped high-density lipoprotein. Proc Natl Acad Sci U S A 108(19):8003–8008. https://doi.org/10.1073/pnas.1017338108

    Article  PubMed  PubMed Central  Google Scholar 

  41. Hadinegoro SR, Arredondo-Garcia JL, Capeding MR, Deseda C, Chotpitayasunondh T et al (2015) Efficacy and long-term safety of a dengue vaccine in regions of endemic disease. N Engl J Med 373:1195–1206. pmid:26214039

    Article  PubMed  CAS  Google Scholar 

  42. Henchal EA, Henchal LS, Schlesinger JJ (1988) Synergistic interactions of anti-NS1 monoclonal antibodies protect passively immunized mice from lethal challenge with dengue 2 virus. J Gen Virol 69(Pt 8):2101–2107

    Article  PubMed  Google Scholar 

  43. Hernandez SID, Puerta-Guardo HN, Aguilar HF, Mateos SG, Martinez IL, Ortiz-Navarrete V, Ludert JE, del Angel RM (2016) Primary dengue virus infections induce differential cytokine production in Mexican patients. Memorias Do Instituto Oswaldo Cruz 111(3):161–U79. https://doi.org/10.1590/0074-02760150359

    Article  CAS  Google Scholar 

  44. Hertz T, Beatty PR, MacMillen Z, Killingbeck SS, Wang C, Harris E (2017) Antibody epitopes identified in critical regions of dengue virus nonstructural 1 protein in mouse vaccination and natural human infections. J Immunol 198(10):4025–4035. https://doi.org/10.4049/jimmunol.1700029

    Article  PubMed  CAS  Google Scholar 

  45. Hung NT, Lei HY, Lan NT, Lin YS, Huang KJ, Lien LB, Lin CF, Yeh TM, Ha DQ, Huong VTQ, Chen LC, Huang JH, My LT, Liu CC, Halstead SB (2004) Dengue hemorrhagic fever in infants: a study of clinical and cytokine profiles. J Infect Dis 189(2):221–232. https://doi.org/10.1086/380762

    Article  CAS  Google Scholar 

  46. Imai Y, Kuba K, Neely GG, Yaghubian-Malhami R, Perkmann T, van Loo G, Ermolaeva M, Veldhuizen R, Leung YH, Wang H, Liu H, Sun Y, Pasparakis M, Kopf M, Mech C, Bavari S, Peiris JS, Slutsky AS, Akira S, Hultqvist M, Holmdahl R, Nicholls J, Jiang C, Binder CJ, Penninger JM (2008) Identification of oxidative stress and toll-like receptor 4 signaling as a key pathway of acute lung injury. Cell 133(2):235–249. https://doi.org/10.1016/j.cell.2008.02.043

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  47. Immenschuh S, Rahayu P, Bayat B, Saragih H, Rachman A, Santoso S (2013) Antibodies against dengue virus nonstructural protein-1 induce heme oxygenase-1 via a redox-dependent pathway in human endothelial cells. Free Radic Biol Med 54:85–92. https://doi.org/10.1016/j.freeradbiomed.2012.10.551

    Article  PubMed  CAS  Google Scholar 

  48. Jacobs SC, Stephenson JR, Wilkinson GW (1992) High-level expression of the tick-borne encephalitis virus NS1 protein by using an adenovirus-based vector: protection elicited in a murine model. J Virol 66(4):2086–2095

    PubMed  PubMed Central  CAS  Google Scholar 

  49. Jacobs SC, Stephenson JR, Wilkinson GW (1994) Protection elicited by a replication-defective adenovirus vector expressing the tick-borne encephalitis virus non-structural glycoprotein NS1. J Gen Virol 75(Pt 9):2399–2402

    Article  PubMed  CAS  Google Scholar 

  50. Jacobs MG, Robinson PJ, Bletchly C, Mackenzie JM, Young PR (2000) Dengue virus nonstructural protein 1 is expressed in a glycosyl-phosphatidylinositol-linked form that is capable of signal transduction. FASEB J 14(11):1603–1610

    Article  PubMed  CAS  Google Scholar 

  51. Jeewandara KC, Gomes L, Gutowska-Owsiak D, Waithe D, Paranavitane SA, Shyamali NA, Ogg GS, Malavige GN (2015) Platelet activating factor contributes to vascular leak in acute dengue infection. Allergy 70:138–138

    Google Scholar 

  52. Jessie K, Fong MY, Devi S, Lam SK, Wong KT (2004) Localization of dengue virus in naturally infected human tissues, by immunohistochemistry and in situ hybridization. J Infect Dis 189(8):1411–1418. https://doi.org/10.1086/383043

    Article  PubMed  Google Scholar 

  53. Khromykh AA, Sedlak PL, Guyatt KJ, Hall RA, Westaway EG (1999) Efficient trans-complementation of the flavivirus kunjin NS5 protein but not of the NS1 protein requires its coexpression with other components of the viral replicase. J Virol 73(12):10272–10280

    PubMed  PubMed Central  CAS  Google Scholar 

  54. Kobayashi S, Kawata T, Kimura A, Miyamoto K, Katayama K, Yamatsu I, Rossignol DP, Christ WJ, Kishi Y (1998) Suppression of murine endotoxin response by E5531, a novel synthetic lipid A antagonist. Antimicrob Agents Chemother 42(11):2824–2829

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Kuronuma K, Mitsuzawa H, Takeda K, Nishitani C, Chan ED, Kuroki Y, Nakamura M, Voelker DR (2009) Anionic pulmonary surfactant phospholipids inhibit inflammatory responses from alveolar macrophages and U937 cells by binding the lipopolysaccharide-interacting proteins CD14 and MD-2. J Biol Chem 284(38):25488–25500. https://doi.org/10.1074/jbc.M109.040832

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. La Braga E, Moura P, Pinto LM, Ignacio SR, Oliveira MJC, Cordeiro MT, Kubelka CF (2001) Detection of circulant tumor necrosis factor-alpha, soluble tumor necrosis factor p75 and interferon-gamma in Brazilian patients with dengue fever and dengue hemorrhagic fever. Memorias Do Instituto Oswaldo Cruz 96(2):229–232

    Article  PubMed  CAS  Google Scholar 

  57. Lai YC, Chuang YC, Liu CC, Ho TS, Lin YS, Anderson R, Yeh TM (2017) Antibodies against modified NS1 wing domain peptide protect against dengue virus infection. Sci Rep 7(1):6975. https://doi.org/10.1038/s41598-017-07308-3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Limonta D, Capo V, Torres G, Perez AB, Guzman MG (2007) Apoptosis in tissues from fatal dengue shock syndrome. J Clin Virol 40(1):50–54. https://doi.org/10.1016/j.jcv.2007.04.024

    Article  PubMed  CAS  Google Scholar 

  59. Lin YL, Chen LK, Liao CL, Yeh CT, Ma SH, Chen JL, Huang YL, Chen SS, Chiang HY (1998) DNA immunization with Japanese encephalitis virus nonstructural protein NS1 elicits protective immunity in mice. J Virol 72(1):191–200

    PubMed  PubMed Central  CAS  Google Scholar 

  60. Lin CF, Lei HY, Liu CC, Liu HS, Yeh TM, Wang ST, Yang TI, Sheu FC, Kuo CF, Lin YS (2001) Generation of IgM anti-platelet autoantibody in dengue patients. J Med Virol 63(2):143–149

    Article  PubMed  CAS  Google Scholar 

  61. Lin CF, Lei HY, Shiau AL, Liu HS, Yeh TM, Chen SH, Liu CC, Chiu SC, Lin YS (2002) Endothelial cell apoptosis induced by antibodies against dengue virus nonstructural protein 1 via production of nitric oxide. J Immunol 169(2):657–664

    Article  PubMed  CAS  Google Scholar 

  62. Lin CF, Lei HY, Shiau AL, Liu CC, Liu HS, Yeh TM, Chen SH, Lin YS (2003) Antibodies from dengue patient sera cross-react with endothelial cells and induce damage. J Med Virol 69(1):82–90

    Article  PubMed  CAS  Google Scholar 

  63. Lin CF, Wan SW, Cheng HJ, Lei HY, Lin YS (2006) Autoimmune pathogenesis in dengue virus infection. Viral Immunol 19(2):127–132

    Article  PubMed  CAS  Google Scholar 

  64. Lindenbach BD, Rice CM (1997) Trans-complementation of yellow fever virus NS1 reveals a role in early RNA replication. J Virol 71(12):9608–9617

    PubMed  PubMed Central  CAS  Google Scholar 

  65. Lindenbach BD, Rice CM (1999) Genetic interaction of flavivirus nonstructural proteins NS1 and NS4A as a determinant of replicase function. J Virol 73(6):4611–4621

    PubMed  PubMed Central  CAS  Google Scholar 

  66. Liu Q, Zhou YH, Yang ZQ (2016) The cytokine storm of severe influenza and development of immunomodulatory therapy. Cell Mol Immunol 13(1):3–10. https://doi.org/10.1038/cmi.2015.74

    Article  PubMed  CAS  Google Scholar 

  67. Long X, Li Y, Qi Y, Xu J, Wang Z, Zhang X, Zhang D, Zhang L, Huang J (2013) XAF1 contributes to dengue virus-induced apoptosis in vascular endothelial cells. FASEB J 27(3):1062–1073. https://doi.org/10.1096/fj.12-213967

    Article  PubMed  CAS  Google Scholar 

  68. Low JG, Sung C, Wijaya L, Wei Y, Rathore AP, Watanabe S, Tan BH, Toh L, Chua LT, Hou Y, Chow A, Howe S, Chan WK, Tan KH, Chung JS, Cherng BP, Lye DC, Tambayah PA, Ng LC, Connolly J, Hibberd ML, Leo YS, Cheung YB, Ooi EE, Vasudevan SG (2014) Efficacy and safety of celgosivir in patients with dengue fever (CELADEN): a phase 1b, randomised, double-blind, placebo-controlled, proof-of-concept trial. Lancet Infect Dis 14(8):706–715. https://doi.org/10.1016/s1473-3099(14)70730-3

    Article  PubMed  CAS  Google Scholar 

  69. Mackenzie JM, Jones MK, Young PR (1996) Immunolocalization of the dengue virus nonstructural glycoprotein NS1 suggests a role in viral RNA replication. Virology 220(1):232–240. https://doi.org/10.1006/viro.1996.0307

    Article  PubMed  CAS  Google Scholar 

  70. Mizuno T, Kurotani T, Komatsu Y, Kawanokuchi J, Kato H, Mitsuma N, Suzumura A (2004) Neuroprotective role of phosphodiesterase inhibitor ibudilast on neuronal cell death induced by activated microglia. Neuropharmacology 46(3):404–411. https://doi.org/10.1016/j.neuropharm.2003.09.009

    Article  PubMed  CAS  Google Scholar 

  71. Modhiran N, Watterson D, Muller DA, Panetta AK, Sester DP, Liu L, Hume DA, Stacey KJ, Young PR (2015) Dengue virus NS1 protein activates cells via toll-like receptor 4 and disrupts endothelial cell monolayer integrity. Sci Transl Med 7(304):304ra142. https://doi.org/10.1126/scitranslmed.aaa3863

    Article  PubMed  CAS  Google Scholar 

  72. Modhiran N, Watterson D, Blumenthal A, Baxter AG, Young PR, Stacey KJ (2017) Dengue virus NS1 protein activates immune cells via TLR4 but not TLR2 or TLR6. Immunol Cell Biol 95(5):491–495. https://doi.org/10.1038/icb.2017.5

    Article  PubMed  CAS  Google Scholar 

  73. Mongkolsapaya J, Duangchinda T, Dejnirattisai W, Vasanawathana S, Avirutnan P, Jairungsri A, Khemnu N, Tangthawornchaikul N, Chotiyarnwong P, Sae-Jang K, Koch M, Jones Y, McMichael A, Xu X, Malasit P, Screaton G (2006) T cell responses in dengue hemorrhagic fever: are cross-reactive T cells suboptimal? J Immunol 176(6):3821–3829. doi:176/6/3821 [pii]

    Article  PubMed  CAS  Google Scholar 

  74. Muller DA, Young PR (2013) The flavivirus NS1 protein: molecular and structural biology, immunology, role in pathogenesis and application as a diagnostic biomarker. Antivir Res 98(2):192–208. https://doi.org/10.1016/j.antiviral.2013.03.008

    Article  PubMed  CAS  Google Scholar 

  75. Muller DA, Landsberg MJ, Bletchly C, Rothnagel R, Waddington L, Hankamer B, Young PR (2012) Structure of the dengue virus glycoprotein non-structural protein 1 by electron microscopy and single-particle analysis. J Gen Virol 93(Pt 4):771–779. https://doi.org/10.1099/vir.0.039321-0

    Article  PubMed  CAS  Google Scholar 

  76. Muller-Eberhard HJ, Dixon FJ, Tuchinda P, Bukkavesa S, Suvatte V (1973) Pathogenetic mechanisms in dengue haemorrhagic fever: report of an international collaborative study. Bull World Health Organ 48(1):117–133

    Google Scholar 

  77. Neri M, Othman SM, Cantatore S, De Carlo D, Pomara C, Riezzo I, Turillazzi E, Fineschi V (2012) Sudden infant death in an 8-month-old baby with dengue virus infection: searching for virus in postmortem tissues by immunohistochemistry and western blotting. Pediatr Infect Dis J 31(8):878–880. https://doi.org/10.1097/INF.0b013e31825c4a08

    Article  PubMed  Google Scholar 

  78. Noisakran S, Dechtawewat T, Rinkaewkan P, Puttikhunt C, Kanjanahaluethai A, Kasinrerk W, Sittisombut N, Malasit P (2007) Characterization of dengue virus NS1 stably expressed in 293T cell lines. J Virol Methods 142(1–2):67–80. https://doi.org/10.1016/j.jviromet.2007.01.008

    Article  PubMed  CAS  Google Scholar 

  79. Nowak T, Farber PM, Wengler G, Wengler G (1989) Analyses of the terminal sequences of West Nile virus structural proteins and of the in vitro translation of these proteins allow the proposal of a complete scheme of the proteolytic cleavages involved in their synthesis. Virology 169(2):365–376

    Article  PubMed  CAS  Google Scholar 

  80. Numata M, Chu HW, Dakhama A, Voelker DR (2010) Pulmonary surfactant phosphatidylglycerol inhibits respiratory syncytial virus-induced inflammation and infection. Proc Natl Acad Sci U S A 107(1):320–325. https://doi.org/10.1073/pnas.0909361107

    Article  PubMed  CAS  Google Scholar 

  81. Numata M, Kandasamy P, Nagashima Y, Posey J, Hartshorn K, Woodland D, Voelker DR (2012) Phosphatidylglycerol suppresses influenza a virus infection. Am J Respir Cell Mol Biol 46(4):479–487. https://doi.org/10.1165/rcmb.2011-0194OC

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Numata M, Nagashima Y, Moore ML, Berry KZ, Chan M, Kandasamy P, Peebles RS Jr, Murphy RC, Voelker DR (2013) Phosphatidylglycerol provides short-term prophylaxis against respiratory syncytial virus infection. J Lipid Res 54(8):2133–2143. https://doi.org/10.1194/jlr.M037077

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Pierson TC, Kielian M (2013) Flaviviruses: braking the entering. Curr Opin Virol 3(1):3–12. https://doi.org/10.1016/j.coviro.2012.12.001

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Post PR, Carvalho R, Galler R (1991) Glycosylation and secretion of yellow fever virus nonstructural protein NS1. Virus Res 18(2–3):291–302

    Article  PubMed  CAS  Google Scholar 

  85. Povoa TF, Alves AM, Oliveira CA, Nuovo GJ, Chagas VL, Paes MV (2014) The pathology of severe dengue in multiple organs of human fatal cases: histopathology, ultrastructure and virus replication. PLoS One 9(4):e83386. https://doi.org/10.1371/journal.pone.0083386

    Article  PubMed  PubMed Central  Google Scholar 

  86. Pryor MJ, Wright PJ (1994) Glycosylation mutants of dengue virus NS1 protein. J Gen Virol 75(Pt 5):1183–1187

    Article  PubMed  CAS  Google Scholar 

  87. Puerta-Guardo H, Glasner DR, Harris E (2016) Dengue virus NS1 disrupts the endothelial Glycocalyx, leading to Hyperpermeability. PLoS Pathog 12(7):e1005738. https://doi.org/10.1371/journal.ppat.1005738

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Rathi KR, Arora MM, Sahai K, Tripathi S, Singh SP, Raman DK, Anand KB (2013) Autopsy findings in fatal dengue haemorrhagic fever – 06 cases. Med J Armed Forces India 69(3):254–259. https://doi.org/10.1016/j.mjafi.2012.08.021

    Article  PubMed  CAS  Google Scholar 

  89. Rice CM, Lenches EM, Eddy SR, Shin SJ, Sheets RL, Strauss JH (1985) Nucleotide sequence of yellow fever virus: implications for flavivirus gene expression and evolution. Science 229(4715):726–733

    Article  PubMed  CAS  Google Scholar 

  90. Rouvinski A, Dejnirattisai W, Guardado-Calvo P, Vaney M-C, Sharma A, Duquerroy S, Supasa P, Wongwiwat W, Haouz A, Barba-Spaeth G, Mongkolsapaya J, Rey FA, Screaton GR (2017) Covalently linked dengue virus envelope glycoprotein dimers reduce exposure of the immunodominant fusion loop epitope. Nature 8:15411. https://doi.org/10.1038/ncomms15411. https://www.nature.com/articles/ncomms15411#supplementary-information

    Article  CAS  Google Scholar 

  91. Ruangjirachuporn W, Boonpucknavig S, Nimmanitya S (1979) Circulating immune complexes in serum from patients with dengue haemorrhagic fever. Clin Exp Immunol 36(1):46–53

    PubMed  PubMed Central  CAS  Google Scholar 

  92. Russell PK, Chiewsilp D, Brandt WE (1970) Immunoprecipitation analysis of soluble complement-fixing antigens of dengue viruses. J Immunol 105(4):838–845

    PubMed  CAS  Google Scholar 

  93. Salgado DM, Eltit JM, Mansfield K, Panqueba C, Castro D, Vega MR, Xhaja K, Schmidt D, Martin KJ, Allen PD, Rodriguez JA, Dinsmore JH, Lopez JR, Bosch I (2010) Heart and skeletal muscle are targets of dengue virus infection. Pediatr Infect Dis J 29(3):238–242. https://doi.org/10.1097/INF.0b013e3181bc3c5b

    Article  PubMed  PubMed Central  Google Scholar 

  94. Scaturro P, Cortese M, Chatel-Chaix L, Fischl W, Bartenschlager R (2015) Dengue virus non-structural protein 1 modulates infectious particle production via interaction with the structural proteins. PLoS Pathog 11(11):e1005277. https://doi.org/10.1371/journal.ppat.1005277

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Schlesinger JJ, Brandriss MW, Walsh EE (1985) Protection against 17D yellow fever encephalitis in mice by passive transfer of monoclonal antibodies to the nonstructural glycoprotein gp48 and by active immunization with gp48. J Immunol 135(4):2805–2809

    PubMed  CAS  Google Scholar 

  96. Schlesinger JJ, Brandriss MW, Cropp CB, Monath TP (1986) Protection against yellow fever in monkeys by immunization with yellow fever virus nonstructural protein NS1. J Virol 60(3):1153–1155

    PubMed  PubMed Central  CAS  Google Scholar 

  97. Schlesinger JJ, Brandriss MW, Walsh EE (1987) Protection of mice against dengue 2 virus encephalitis by immunization with the dengue 2 virus non-structural glycoprotein NS1. J Gen Virol 68(Pt 3):853–857

    Article  PubMed  CAS  Google Scholar 

  98. Schlesinger JJ, Brandriss MW, Putnak JR, Walsh EE (1990) Cell surface expression of yellow fever virus non-structural glycoprotein NS1: consequences of interaction with antibody. J Gen Virol 71(Pt 3):593–599. https://doi.org/10.1099/0022-1317-71-3-593

    Article  PubMed  CAS  Google Scholar 

  99. Schlesinger JJ, Foltzer M, Chapman S (1993) The fc portion of antibody to yellow fever virus NS1 is a determinant of protection against YF encephalitis in mice. Virology 192(1):132–141. https://doi.org/10.1006/viro.1993.1015

    Article  PubMed  CAS  Google Scholar 

  100. Schmidt EP, Yang Y, Janssen WJ, Gandjeva A, Perez MJ, Barthel L, Zemans RL, Bowman JC, Koyanagi DE, Yunt ZX, Smith LP, Cheng SS, Overdier KH, Thompson KR, Geraci MW, Douglas IS, Pearse DB, Tuder RM (2012) The pulmonary endothelial glycocalyx regulates neutrophil adhesion and lung injury during experimental sepsis. Nat Med 18(8):1217–1223. https://doi.org/10.1038/nm.2843

    Article  PubMed  CAS  Google Scholar 

  101. Sha T, Sunamoto M, Kitazaki T, Sato J, Ii M, Iizawa Y (2007) Therapeutic effects of TAK-242, a novel selective toll-like receptor 4 signal transduction inhibitor, in mouse endotoxin shock model. Eur J Pharmacol 571(2–3):231–239. https://doi.org/10.1016/j.ejphar.2007.06.027

    Article  PubMed  CAS  Google Scholar 

  102. Shirey KA, Lai W, Scott AJ, Lipsky M, Mistry P, Pletneva LM, Karp CL, McAlees J, Gioannini TL, Weiss J, Chen WH, Ernst RK, Rossignol DP, Gusovsky F, Blanco JC, Vogel SN (2013) The TLR4 antagonist Eritoran protects mice from lethal influenza infection. Nature 497(7450):498–502. https://doi.org/10.1038/nature12118

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Smith GW, Wright PJ (1985) Synthesis of proteins and glycoproteins in dengue type 2 virus-infected vero and Aedes albopictus cells. J Gen Virol 66(Pt 3):559–571

    Article  PubMed  CAS  Google Scholar 

  104. Smith TJ, Brandt WE, Swanson JL, McCown JM, Buescher EL (1970) Physical and biological properties of dengue-2 virus and associated antigens. J Virol 5(4):524–532

    PubMed  PubMed Central  CAS  Google Scholar 

  105. Sobel AT, Bokisch VA, Müller-Eberhard HJ (1975) C1q deviation test for the detection of immune complexes, aggregates of IgG, and bacterial products in human serum. J Exp Med 142(1):139–150. https://doi.org/10.1084/jem.142.1.139

    Article  PubMed  CAS  Google Scholar 

  106. Somnuke P, Hauhart RE, Atkinson JP, Diamond MS, Avirutnan P (2011) N-linked glycosylation of dengue virus NS1 protein modulates secretion, cell-surface expression, hexamer stability, and interactions with human complement. Virology 413(2):253–264. https://doi.org/10.1016/j.virol.2011.02.022

    Article  PubMed  CAS  Google Scholar 

  107. Song H, Qi J, Haywood J, Shi Y, Gao GF (2016) Zika virus NS1 structure reveals diversity of electrostatic surfaces among flaviviruses. Nat Struct Mol Biol 23(5):456–458. https://doi.org/10.1038/nsmb.3213. http://www.nature.com/nsmb/journal/v23/n5/abs/nsmb.3213.html#supplementary-information

    Article  PubMed  CAS  Google Scholar 

  108. Spiller S, Elson G, Ferstl R, Dreher S, Mueller T, Freudenberg M, Daubeuf B, Wagner H, Kirschning CJ (2008) TLR4-induced IFN-gamma production increases TLR2 sensitivity and drives gram-negative sepsis in mice. J Exp Med 205(8):1747–1754. https://doi.org/10.1084/jem.20071990

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Sun DS, King CC, Huang HS, Shih YL, Lee CC, Tsai WJ, Yu CC, Chang HH (2007) Antiplatelet autoantibodies elicited by dengue virus non-structural protein 1 cause thrombocytopenia and mortality in mice. J Thromb Haemost 5(11):2291–2299

    Article  PubMed  CAS  Google Scholar 

  110. Sung C, Wei Y, Watanabe S, Lee HS, Khoo YM, Fan L, Rathore AP, Chan KW, Choy MM, Kamaraj US, Sessions OM, Aw P, de Sessions PF, Lee B, Connolly JE, Hibberd ML, Vijaykrishna D, Wijaya L, Ooi EE, Low JG, Vasudevan SG (2016) Extended evaluation of Virological, immunological and pharmacokinetic endpoints of CELADEN: a randomized, placebo-controlled trial of Celgosivir in dengue fever patients. PLoS Negl Trop Dis 10(8):e0004851. https://doi.org/10.1371/journal.pntd.0004851

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Tam DT, Ngoc TV, Tien NT, Kieu NT, Thuy TT, Thanh LT, Tam CT, Truong NT, Dung NT, Qui PT, Hien TT, Farrar JJ, Simmons CP, Wolbers M, Wills BA (2012) Effects of short-course oral corticosteroid therapy in early dengue infection in Vietnamese patients: a randomized, placebo-controlled trial. Clin Infect Dis 55(9):1216–1224. https://doi.org/10.1093/cid/cis655

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Theofilopoulos AN, Wilson CB, Dixon FJ (1976) The Raji cell radioimmune assay for detecting immune complexes in human sera. J Clin Investig 57(1):169–182

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  113. Timofeev AV, Ozherelkov SV, Pronin AV, Deeva AV, Karganova GG, Elbert LB, Stephenson JR (1998) Immunological basis for protection in a murine model of tick-borne encephalitis by a recombinant adenovirus carrying the gene encoding the NS1 non-structural protein. J Gen Virol 79(Pt 4):689–695

    Article  PubMed  CAS  Google Scholar 

  114. Timofeev AV, Butenko VM, Stephenson JR (2004) Genetic vaccination of mice with plasmids encoding the NS1 non-structural protein from tick-borne encephalitis virus and dengue 2 virus. Virus Genes 28(1):85–97

    Article  PubMed  CAS  Google Scholar 

  115. Trent DW, Kinney RM, Johnson BJ, Vorndam AV, Grant JA, Deubel V, Rice CM, Hahn C (1987) Partial nucleotide sequence of St. Louis encephalitis virus RNA: structural proteins, NS1, ns2a, and ns2b. Virology 156(2):293–304

    Article  PubMed  CAS  Google Scholar 

  116. van de Weg CA, Koraka P, van Gorp EC, Mairuhu AT, Supriatna M, Soemantri A, van de Vijver DA, Osterhaus AD, Martina BE (2012) Lipopolysaccharide levels are elevated in dengue virus infected patients and correlate with disease severity. J Clin Virol 53(1):38–42. https://doi.org/10.1016/j.jcv.2011.09.028

    Article  PubMed  CAS  Google Scholar 

  117. Vasquez Ochoa M, Garcia Cordero J, Gutierrez Castaneda B, Santos Argumedo L, Villegas Sepulveda N, Cedillo Barron L (2009) A clinical isolate of dengue virus and its proteins induce apoptosis in HMEC-1 cells: a possible implication in pathogenesis. Arch Virol 154(6):919–928. https://doi.org/10.1007/s00705-009-0396-7

    Article  PubMed  CAS  Google Scholar 

  118. Volpina OM, Volkova TD, Koroev DO, Ivanov VT, Ozherelkov SV, Khoretonenko MV, Vorovitch MF, Stephenson JR, Timofeev AV (2005) A synthetic peptide based on the NS1 non-structural protein of tick-borne encephalitis virus induces a protective immune response against fatal encephalitis in an experimental animal model. Virus Res 112(1–2):95–99

    Article  PubMed  CAS  Google Scholar 

  119. Wallis TP, Huang CY, Nimkar SB, Young PR, Gorman JJ (2004) Determination of the disulfide bond arrangement of dengue virus NS1 protein. J Biol Chem 279(20):20729–20741. https://doi.org/10.1074/jbc.M312907200

    Article  PubMed  CAS  Google Scholar 

  120. Wan SW, Lu YT, Huang CH, Lin CF, Anderson R, Liu HS, Yeh TM, Yen YT, Wu-Hsieh BA, Lin YS (2014) Protection against dengue virus infection in mice by administration of antibodies against modified nonstructural protein 1. PLoS One 9(3):e92495. https://doi.org/10.1371/journal.pone.0092495

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Wang R, Stephens J, Lacy MJ (2003) Characterization of monoclonal antibody HTA125 with specificity for human TLR4. Hybrid Hybridomics 22(6):357–365. https://doi.org/10.1089/153685903771797057

    Article  PubMed  CAS  Google Scholar 

  122. Wang L, Huang X, Kong G, Xu H, Li J, Hao D, Wang T, Han S, Han C, Sun Y, Liu X, Wang X (2016) Ulinastatin attenuates pulmonary endothelial glycocalyx damage and inhibits endothelial heparanase activity in LPS-induced ARDS. Biochem Biophys Res Commun 478(2):669–675. https://doi.org/10.1016/j.bbrc.2016.08.005

    Article  PubMed  CAS  Google Scholar 

  123. Watterson D, Modhiran N, Young PR (2016) The many faces of the flavivirus NS1 protein offer a multitude of options for inhibitor design. Antivir Res 130: 7–18.

    Article  PubMed  CAS  Google Scholar 

  124. Westaway EG (1975) The proteins of Murray Valley encephalitis virus. J Gen Virol 27(3):293–292

    Article  PubMed  CAS  Google Scholar 

  125. Winkler G, Randolph VB, Cleaves GR, Ryan TE, Stollar V (1988) Evidence that the mature form of the flavivirus nonstructural protein NS1 is a dimer. Virology 162(1):187–196

    Article  PubMed  CAS  Google Scholar 

  126. Winkler G, Maxwell SE, Ruemmler C, Stollar V (1989) Newly synthesized dengue-2 virus nonstructural protein NS1 is a soluble protein but becomes partially hydrophobic and membrane-associated after dimerization. Virology 171(1):302–305

    Article  PubMed  CAS  Google Scholar 

  127. Wu SF, Liao CL, Lin YL, Yeh CT, Chen LK, Huang YF, Chou HY, Huang JL, Shaio MF, Sytwu HK (2003) Evaluation of protective efficacy and immune mechanisms of using a non-structural protein NS1 in DNA vaccine against dengue 2 virus in mice. Vaccine 21(25–26):3919–3929

    Article  PubMed  CAS  Google Scholar 

  128. Xu X, Song H, Qi J, Liu Y, Wang H, Su C, Shi Y, Gao GF (2016) Contribution of intertwined loop to membrane association revealed by Zika virus full-length NS1 structure. Embo J 35(20):2170–2178. https://doi.org/10.15252/embj.201695290

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Ye D, Ma I, Ma TY (2006) Molecular mechanism of tumor necrosis factor-alpha modulation of intestinal epithelial tight junction barrier. Am J Physiol Gastrointest Liver Physiol 290(3):G496–G504. https://doi.org/10.1152/ajpgi.00318.2005

    Article  PubMed  CAS  Google Scholar 

  130. Youn S, Cho H, Fremont DH, Diamond MS (2010) A short N-terminal peptide motif on flavivirus nonstructural protein NS1 modulates cellular targeting and immune recognition. J Virol 84(18):9516–9532. https://doi.org/10.1128/jvi.00775-10

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Daniel Watterson or Paul R. Young .

Editor information

Editors and Affiliations

Discussion of Chapter 7 in Dengue and Zika: Control and Antiviral Treatment Strategies

Discussion of Chapter 7 in Dengue and Zika: Control and Antiviral Treatment Strategies

This discussion was held at the 2nd Advanced Study Week on Emerging Viral Diseases at Praia do Tofo, Mozambique.Transcribed by Hilgenfeld R and Vasudevan SG (Eds); approved by Dr. Paul Young.

  • Subhash Vasudevan: Which Virus strains did you use for the mouse challenge experiment?

  • Paul Young: We have done two principle studies, multiple times. S221 which is the Shresta mouse-adapted strain in AG129. And also an East Timor clinical strain, not mouse-adapted for DENV1.

  • George Gao: Have you compared the dimer versus the hexamer in your experiment?

  • Paul Young: You can’t use the dimer form in tissue culture experiments. The dimer in a non-detergent enviroment would aggregate. That was one of the biggest issues in terms of trying to crystallize it. It was crystallized in the end in the presence of detergent, so you can break down the hexamer into a dimer, but then it aggregates again when you put it into a normal detergent-free, in vivo enviroment.

  • George Gao: So then the question is that both Janet Smith and my group have published NS1 dimer structures. We think it is a dimer.

  • Paul Young: Yes, you got the Zika NS1 dimer but I would assume there is detergent in the crystallization buffer.

  • George Gao: But can you purify it?

  • Paul Young: If you purify it in the context of detergent you get the dimer form. We routinely purify it as a hexamer in the absence of detergent. So what I am saying is: you can purify it in its dimer form, and can maintain it as a dimer when there is detergent present. But if you put it into an in vivo system, if you take away the detergent it aggregates because of the exposed hydrophobic domains.

  • Norbert Heinrich: This may be a naive question, but seeing as you showed that NS1 triggers IL6 release from PBMC, obviously the next step would be CRP (C-reactive protein) production in the liver. Do you know whether that is clinically relevant following the conclusion that we can not use CRP to discriminate viral from bacterial infections in Dengue?

  • Paul Young: That could be true. Hepatomegaly is a significant clinical feature for Dengue patients. So we have seen that is happening and CRP is shown to be elevated in Dengue patients.

  • Norbert Heinrich: And likewise would you think the same is true for the other Flaviviruses and their NS1?

  • Paul Young: I never try to extrapolate from one flavivirus to another Aravinda. Hepatomegaly is a feature of other flaviviruses and maybe it is for yellow fever?

  • Aravinda de Silva: Yes. I do not know.

  • Paul Young: Yes I do not know either. It is possible.

  • Aravinda de Silva: So how do you explain the reduced viremia which is a very surprising result?

  • Paul Young: We were also surprised. What we do know – there has been some literature, and we have confirmed it ourselves – is that if you add NS1 to macrophages that have been infected you will increase viral infection. We think that it is simply because the activated profile of the macrophages are a much better enviroment for the virus to grow. So you can imagine that knocking down that effect might have some impact, but we didn’t expect to knock it back completely. I can imagine that some drop in viral load, but not completely. We are currently trying to investigate the mechanism.

  • Subhash Vasudevan: And you see this 48 hours post-infection which is spectacular.

  • Paul Young: Yes and also the fact that treatment at day zero would be exactly the wrong thing to be doing.

  • Shi Yi: Do you have any direct binding data for toll-like receptor 4 and NS1?

  • Paul Young: We have co-precipitation data. What we are obviously trying to do is to get a co-crystal structure. That is going to be a huge challenge, but we are doing the co-precipitation studies and have shown that it will co-precipitate when you combine them.

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Watterson, D., Modhiran, N., Muller, D.A., Stacey, K.J., Young, P.R. (2018). Plugging the Leak in Dengue Shock. In: Hilgenfeld, R., Vasudevan, S. (eds) Dengue and Zika: Control and Antiviral Treatment Strategies. Advances in Experimental Medicine and Biology, vol 1062. Springer, Singapore. https://doi.org/10.1007/978-981-10-8727-1_7

Download citation

Publish with us

Policies and ethics