Skip to main content

Flaviviral RNA Structures and Their Role in Replication and Immunity

  • Chapter
  • First Online:
Dengue and Zika: Control and Antiviral Treatment Strategies

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1062))

Abstract

More than simple vectors of genetic information, flaviviral RNAs have emerged as critical regulators of the virus life cycle. Viral RNAs regulate interactions with viral and cellular proteins in both, mosquito and mammalian hosts to ultimately influence processes as diverse as RNA replication, translation, packaging or pathogenicity. In this chapter, we will review the current knowledge of the role of sequence and structures in the flaviviral RNA in viral propagation and interaction with the host cell. We will also cover the increasing body of evidence linking viral non-coding RNAs with pathogenicity, host immunity and epidemic potential.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

(+)gRNA:

Positive-stranded genome RNA

(−)gRNA:

Negative-stranded antigenome RNA

3′DB:

3′ untranslated region dumbbell region

3′HP:

3′ hairpin

3′SL:

3′ terminal stem loop

3′VR:

3′ untranslated region variable region

3′xrRNA:

3′ exonuclease-resistant RNA structure

5′cHP:

5′ capsid hairpin

5′ and 3′CS:

5′ and 3′ complementary cyclization sequences

5′ and 3′UAR:

5′ and 3′ complementary upstream of A regions

5′SLA/SLB:

5′ terminal stem loop A/B

DENV:

Dengue virus

DIG:

Defective interfering genome

dsRNA:

Double-stranded RNA

HCV:

Hepatitis C virus

IFN:

Interferon type I (IFN-α and IFN-β)

ISG:

Interferon-stimulated genes

JEV:

Japanese encephalitis virus

KUNV:

Kunjin virus

MTase:

Methyltransferase

m6A:

N-6 methyladenosine

ncRNA:

Non-coding RNA

NTPase:

Nucleoside triphosphatase

ORF:

Open reading frame

PRR:

Pathogen recognition receptor

RdRp:

RNA-dependent RNA-polymerase

RNAi:

RNA interference

sfRNA:

Subgenomic flaviviral RNA

UTR:

Untranslated region

vsRNA:

Viral small RNA

WNV:

West Nile virus

YFV:

Yellow fever virus

ZIKV:

Zika virus

References

  1. Akiyama BM, Laurence HM, Massey AR, Costantino DA, Xie X, Yang Y, Shi PY, Nix JC, Beckham JD, Kieft JS (2016) Zika virus produces noncoding RNAs using a multi-pseudoknot structure that confounds a cellular exonuclease. Science 354(6316):1148–1152. https://doi.org/10.1126/science.aah3963

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Alvarez DE, De Lella Ezcurra AL, Fucito S, Gamarnik AV (2005) Role of RNA structures present at the 3′UTR of dengue virus on translation, RNA synthesis, and viral replication. Virology 339(2):200–212. https://doi.org/10.1016/j.virol.2005.06.009

    Article  PubMed  CAS  Google Scholar 

  3. Alvarez DE, Lodeiro MF, Luduena SJ, Pietrasanta LI, Gamarnik AV (2005) Long-range RNA-RNA interactions circularize the dengue virus genome. J Virol 79(11):6631–6643. https://doi.org/10.1128/JVI.79.11.6631-6643.2005

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Alvarez DE, Filomatori CV, Gamarnik AV (2008) Functional analysis of dengue virus cyclization sequences located at the 5′ and 3′UTRs. Virology 375(1):223–235. https://doi.org/10.1016/j.virol.2008.01.014

    Article  PubMed  CAS  Google Scholar 

  5. Anwar A, Leong KM, Ng ML, Chu JJ, Garcia-Blanco MA (2009) The polypyrimidine tract-binding protein is required for efficient dengue virus propagation and associates with the viral replication machinery. J Biol Chem 284(25):17021–17029. https://doi.org/10.1074/jbc.M109.006239

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Bhattacharya D, Hoover S, Falk SP, Weisblum B, Vestling M, Striker R (2008) Phosphorylation of yellow fever virus NS5 alters methyltransferase activity. Virology 380(2):276–284. https://doi.org/10.1016/j.virol.2008.07.013

    Article  PubMed  CAS  Google Scholar 

  7. Bidet K, Dadlani D, Garcia-Blanco MA (2014) G3BP1, G3BP2 and CAPRIN1 are required for translation of interferon stimulated mRNAs and are targeted by a dengue virus non-coding RNA. PLoS Pathog 10(7):e1004242. https://doi.org/10.1371/journal.ppat.1004242

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Bidet K, Garcia-Blanco MA (2014) Flaviviral RNAs: weapons and targets in the war between virus and host. Biochem J 462(2):215–230. https://doi.org/10.1042/BJ20140456

    Article  PubMed  CAS  Google Scholar 

  9. Campos RK, Garcia-Blanco MA, Bradrick SS (2017). Roles of pro-viral host factors in mosquito-borne Flavivirus infections. Curr Top Microbiol Immunol https://doi.org/10.1007/82_2017_26

    Google Scholar 

  10. Campos RK, Wong B, Xie X, Lu YF, Shi PY, Pompon J, Garcia-Blanco MA, Bradrick SS (2017). RPLP1 and RPLP2 are essential Flavivirus host factors that promote early viral protein accumulation. J Virol 91(4) https://doi.org/10.1128/JVI.01706-16

    Google Scholar 

  11. Chahar HS, Chen S, Manjunath N (2013) P-body components LSM1, GW182, DDX3, DDX6 and XRN1 are recruited to WNV replication sites and positively regulate viral replication. Virology 436(1):1–7. https://doi.org/10.1016/j.virol.2012.09.041

    Article  PubMed  CAS  Google Scholar 

  12. Chang RY, Hsu TW, Chen YL, Liu SF, Tsai YJ, Lin YT, Chen YS, Fan YH (2013) Japanese encephalitis virus non-coding RNA inhibits activation of interferon by blocking nuclear translocation of interferon regulatory factor 3. Vet Microbiol 166(1–2):11–21. https://doi.org/10.1016/j.vetmic.2013.04.026

    Article  PubMed  CAS  Google Scholar 

  13. Chapman EG, Costantino DA, Rabe JL, Moon SL, Wilusz J, Nix JC, Kieft JS (2014) The structural basis of pathogenic subgenomic flavivirus RNA (sfRNA) production. Science 344(6181):307–310. https://doi.org/10.1126/science.1250897

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Chapman EG, Moon SL, Wilusz J, Kieft JS (2014) RNA structures that resist degradation by Xrn1 produce a pathogenic Dengue virus RNA. eLife 3:e01892. https://doi.org/10.7554/eLife.01892

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Cheong YK, Ng ML (2011) Dephosphorylation of West Nile virus capsid protein enhances the processes of nucleocapsid assembly. Microbes Infec Inst Pasteur 13(1):76–84. https://doi.org/10.1016/j.micinf.2010.10.014

    Article  CAS  Google Scholar 

  16. Chien HL, Liao CL, Lin YL (2011) FUSE binding protein 1 interacts with untranslated regions of Japanese encephalitis virus RNA and negatively regulates viral replication. J Virol 85(10):4698–4706. https://doi.org/10.1128/JVI.01950-10

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Clyde K, Barrera J, Harris E (2008) The capsid-coding region hairpin element (cHP) is a critical determinant of dengue virus and West Nile virus RNA synthesis. Virology 379(2):314–323. https://doi.org/10.1016/j.virol.2008.06.034

    Article  PubMed  CAS  Google Scholar 

  18. Clyde K, Harris E (2006) RNA secondary structure in the coding region of dengue virus type 2 directs translation start codon selection and is required for viral replication. J Virol 80(5):2170–2182. https://doi.org/10.1128/JVI.80.5.2170-2182.2006

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Cullen BR (2011) Viruses and microRNAs: RISCy interactions with serious consequences. Genes Dev 25(18):1881–1894. https://doi.org/10.1101/gad.17352611

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. da Conceicao TM, Rust NM, Berbel AC, Martins NB, do Nascimento Santos CA, Da Poian AT, de Arruda LB (2013) Essential role of RIG-I in the activation of endothelial cells by dengue virus. Virology 435(2):281–292. https://doi.org/10.1016/j.virol.2012.09.038

    Article  PubMed  CAS  Google Scholar 

  21. Daffis S, Samuel MA, Suthar MS, Gale M Jr, Diamond MS (2008) Toll-like receptor 3 has a protective role against West Nile virus infection. J Virol 82(21):10349–10358. https://doi.org/10.1128/JVI.00935-08

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Daffis S, Szretter KJ, Schriewer J, Li J, Youn S, Errett J, Lin TY, Schneller S, Zust R, Dong H, Thiel V, Sen GC, Fensterl V, Klimstra WB, Pierson TC, Buller RM, Gale M Jr, Shi PY, Diamond MS (2010) 2′-O methylation of the viral mRNA cap evades host restriction by IFIT family members. Nature 468(7322):452–456. https://doi.org/10.1038/nature09489

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Davis WG, Blackwell JL, Shi PY, Brinton MA (2007) Interaction between the cellular protein eEF1A and the 3′-terminal stem-loop of West Nile virus genomic RNA facilitates viral minus-strand RNA synthesis. J Virol 81(18):10172–10187. https://doi.org/10.1128/JVI.00531-07

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. de Borba L, Villordo SM, Iglesias NG, Filomatori CV, Gebhard LG, Gamarnik AV (2015) Overlapping local and long-range RNA-RNA interactions modulate dengue virus genome cyclization and replication. J Virol 89(6):3430–3437. https://doi.org/10.1128/JVI.02677-14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Dechtawewat T, Songprakhon P, Limjindaporn T, Puttikhunt C, Kasinrerk W, Saitornuang S, Yenchitsomanus PT, Noisakran S (2015) Role of human heterogeneous nuclear ribonucleoprotein C1/C2 in dengue virus replication. Virol J 12:14. https://doi.org/10.1186/s12985-014-0219-7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Donald CL, Brennan B, Cumberworth SL, Rezelj VV, Clark JJ, Cordeiro MT, Freitas de Oliveira Franca R, Pena LJ, Wilkie GS, Da Silva Filipe A, Davis C, Hughes J, Varjak M, Selinger M, Zuvanov L, Owsianka AM, Patel AH, McLauchlan J, Lindenbach BD, Fall G, Sall AA, Biek R, Rehwinkel J, Schnettler E, Kohl A (2016) Full genome sequence and sfRNA interferon antagonist activity of Zika virus from Recife, Brazil. PLoS Negl Trop Dis 10(10):e0005048. https://doi.org/10.1371/journal.pntd.0005048

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Dong H, Zhang B, Shi PY (2008) Terminal structures of West Nile virus genomic RNA and their interactions with viral NS5 protein. Virology 381(1):123–135. https://doi.org/10.1016/j.virol.2008.07.040

    Article  PubMed  CAS  Google Scholar 

  28. Dong Y, Yang J, Ye W, Wang Y, Miao Y, Ding T, Xiang C, Lei Y, Xu Z (2015) LSm1 binds to the dengue virus RNA 3′ UTR and is a positive regulator of dengue virus replication. Int J Mol Med 35(6):1683–1689. https://doi.org/10.3892/ijmm.2015.2169

    Article  PubMed  CAS  Google Scholar 

  29. Edgil D, Polacek C, Harris E (2006) Dengue virus utilizes a novel strategy for translation initiation when cap-dependent translation is inhibited. J Virol 80(6):2976–2986. https://doi.org/10.1128/JVI.80.6.2976-2986.2006

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Emara MM, Brinton MA (2007) Interaction of TIA-1/TIAR with West Nile and dengue virus products in infected cells interferes with stress granule formation and processing body assembly. Proc Natl Acad Sci U S A 104(21):9041–9046. https://doi.org/10.1073/pnas.0703348104

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Emara MM, Liu H, Davis WG, Brinton MA (2008) Mutation of mapped TIA-1/TIAR binding sites in the 3′ terminal stem-loop of West Nile virus minus-strand RNA in an infectious clone negatively affects genomic RNA amplification. J Virol 82(21):10657–10670. https://doi.org/10.1128/JVI.00991-08

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Filomatori CV, Carballeda JM, Villordo SM, Aguirre S, Pallares HM, Maestre AM, Sanchez-Vargas I, Blair CD, Fabri C, Morales MA, Fernandez-Sesma A, Gamarnik AV (2017) Dengue virus genomic variation associated with mosquito adaptation defines the pattern of viral non-coding RNAs and fitness in human cells. PLoS Pathog 13(3):e1006265. https://doi.org/10.1371/journal.ppat.1006265

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Filomatori CV, Iglesias NG, Villordo SM, Alvarez DE, Gamarnik AV (2011) RNA sequences and structures required for the recruitment and activity of the dengue virus polymerase. J Biol Chem 286(9):6929–6939. https://doi.org/10.1074/jbc.M110.162289

    Article  PubMed  CAS  Google Scholar 

  34. Filomatori CV, Lodeiro MF, Alvarez DE, Samsa MM, Pietrasanta L, Gamarnik AV (2006) A 5′ RNA element promotes dengue virus RNA synthesis on a circular genome. Genes Dev 20(16):2238–2249. https://doi.org/10.1101/gad.1444206

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Firth AE, Atkins JF (2009) A conserved predicted pseudoknot in the NS2A-encoding sequence of West Nile and Japanese encephalitis flaviviruses suggests NS1′ may derive from ribosomal frameshifting. Virol J 6:14. https://doi.org/10.1186/1743-422X-6-14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Friebe P, Harris E (2010) Interplay of RNA elements in the dengue virus 5′ and 3′ ends required for viral RNA replication. J Virol 84(12):6103–6118. https://doi.org/10.1128/JVI.02042-09

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Funk A, Truong K, Nagasaki T, Torres S, Floden N, Balmori Melian E, Edmonds J, Dong H, Shi PY, Khromykh AA (2010) RNA structures required for production of subgenomic flavivirus RNA. J Virol 84(21):11407–11417. https://doi.org/10.1128/JVI.01159-10

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Garcia-Blanco MA, Vasudevan SG, Bradrick SS, Nicchitta C (2016) Flavivirus RNA transactions from viral entry to genome replication. Antivir Res 134:244–249. https://doi.org/10.1016/j.antiviral.2016.09.010

    Article  PubMed  CAS  Google Scholar 

  39. Garcia-Montalvo BM, Medina F, del Angel RM (2004) La protein binds to NS5 and NS3 and to the 5′ and 3′ ends of dengue 4 virus RNA. Virus Res 102(2):141–150. https://doi.org/10.1016/j.virusres.2004.01.024

    Article  PubMed  CAS  Google Scholar 

  40. Gebhard LG, Filomatori CV, Gamarnik AV (2011) Functional RNA elements in the dengue virus genome. Virus 3(9):1739–1756. https://doi.org/10.3390/v3091739

    Article  CAS  Google Scholar 

  41. Gillespie LK, Hoenen A, Morgan G, Mackenzie JM (2010) The endoplasmic reticulum provides the membrane platform for biogenesis of the flavivirus replication complex. J Virol 84(20):10438–10447. https://doi.org/10.1128/JVI.00986-10

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Goertz GP, Fros JJ, Miesen P, Vogels CB, van der Bent ML, Geertsema C, Koenraadt CJ, van Rij RP, van Oers MM, Pijlman GP (2016) Noncoding subgenomic Flavivirus RNA is processed by the mosquito RNA interference machinery and determines West Nile virus transmission by Culex pipiens mosquitoes. J Virol 90(22):10145–10159. https://doi.org/10.1128/JVI.00930-16

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Gokhale NS, McIntyre AB, McFadden MJ, Roder AE, Kennedy EM, Gandara JA, Hopcraft SE, Quicke KM, Vazquez C, Willer J, Ilkayeva OR, Law BA, Holley CL, Garcia-Blanco MA, Evans MJ, Suthar MS, Bradrick SS, Mason CE, Horner SM (2016) N6-methyladenosine in flaviviridae viral RNA genomes regulates infection. Cell Host Microbe. https://doi.org/10.1016/j.chom.2016.09.015

  44. Gomila RC, Martin GW, Gehrke L (2011) NF90 binds the dengue virus RNA 3′ terminus and is a positive regulator of dengue virus replication. PLoS One 6(2):e16687. https://doi.org/10.1371/journal.pone.0016687

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Groat-Carmona AM, Orozco S, Friebe P, Payne A, Kramer L, Harris E (2012) A novel coding-region RNA element modulates infectious dengue virus particle production in both mammalian and mosquito cells and regulates viral replication in Aedes aegypti mosquitoes. Virology 432(2):511–526. https://doi.org/10.1016/j.virol.2012.06.028

    Article  PubMed  CAS  Google Scholar 

  46. Hoenen A, Liu W, Kochs G, Khromykh AA, Mackenzie JM (2007) West Nile virus-induced cytoplasmic membrane structures provide partial protection against the interferon-induced antiviral MxA protein. J Gen Virol 88(Pt 11):3013–3017. https://doi.org/10.1099/vir.0.83125-0

    Article  PubMed  CAS  Google Scholar 

  47. Holden KL, Harris E (2004) Enhancement of dengue virus translation: role of the 3′ untranslated region and the terminal 3′ stem-loop domain. Virology 329(1):119–133. https://doi.org/10.1016/j.virol.2004.08.004

    Article  PubMed  CAS  Google Scholar 

  48. Holden KL, Stein DA, Pierson TC, Ahmed AA, Clyde K, Iversen PL, Harris E (2006) Inhibition of dengue virus translation and RNA synthesis by a morpholino oligomer targeted to the top of the terminal 3′ stem-loop structure. Virology 344(2):439–452. https://doi.org/10.1016/j.virol.2005.08.034

    Article  PubMed  CAS  Google Scholar 

  49. Hussain M, Torres S, Schnettler E, Funk A, Grundhoff A, Pijlman GP, Khromykh AA, Asgari S (2012) West Nile virus encodes a microRNA-like small RNA in the 3′ untranslated region which up-regulates GATA4 mRNA and facilitates virus replication in mosquito cells. Nucleic Acids Res 40(5):2210–2223. https://doi.org/10.1093/nar/gkr848

    Article  PubMed  CAS  Google Scholar 

  50. Issur M, Geiss BJ, Bougie I, Picard-Jean F, Despins S, Mayette J, Hobdey SE, Bisaillon M (2009) The flavivirus NS5 protein is a true RNA guanylyltransferase that catalyzes a two-step reaction to form the RNA cap structure. RNA 15(12):2340–2350. https://doi.org/10.1261/rna.1609709

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Jiang L, Yao H, Duan X, Lu X, Liu Y (2009) Polypyrimidine tract-binding protein influences negative strand RNA synthesis of dengue virus. Biochem Biophys Res Commun 385(2):187–192. https://doi.org/10.1016/j.bbrc.2009.05.036

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  52. Jin Z, Deval J, Johnson KA, Swinney DC (2011) Characterization of the elongation complex of dengue virus RNA polymerase: assembly, kinetics of nucleotide incorporation, and fidelity. J Biol Chem 286(3):2067–2077. https://doi.org/10.1074/jbc.M110.162685

    Article  PubMed  CAS  Google Scholar 

  53. Juarez-Martinez AB, Vega-Almeida TO, Salas-Benito M, Garcia-Espitia M, De Nova-Ocampo M, Del Angel RM, Salas-Benito JS (2013) Detection and sequencing of defective viral genomes in C6/36 cells persistently infected with dengue virus 2. Arch Virol 158(3):583–599. https://doi.org/10.1007/s00705-012-1525-2

    Article  PubMed  CAS  Google Scholar 

  54. Katoh H, Mori Y, Kambara H, Abe T, Fukuhara T, Morita E, Moriishi K, Kamitani W, Matsuura Y (2011) Heterogeneous nuclear ribonucleoprotein A2 participates in the replication of Japanese encephalitis virus through an interaction with viral proteins and RNA. J Virol 85(21):10976–10988. https://doi.org/10.1128/JVI.00846-11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Khromykh AA, Meka H, Guyatt KJ, Westaway EG (2001) Essential role of cyclization sequences in flavivirus RNA replication. J Virol 75(14):6719–6728. https://doi.org/10.1128/JVI.75.14.6719-6728.2001

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Khromykh AA, Varnavski AN, Sedlak PL, Westaway EG (2001) Coupling between replication and packaging of flavivirus RNA: evidence derived from the use of DNA-based full-length cDNA clones of Kunjin virus. J Virol 75(10):4633–4640. https://doi.org/10.1128/JVI.75.10.4633-4640.2001

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Klema VJ, Ye M, Hindupur A, Teramoto T, Gottipati K, Padmanabhan R, Choi KH (2016) Dengue virus nonstructural protein 5 (NS5) assembles into a dimer with a unique Methyltransferase and polymerase Interface. PLoS Pathog 12(2):e1005451. https://doi.org/10.1371/journal.ppat.1005451

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Krishnan MN, Ng A, Sukumaran B, Gilfoy FD, Uchil PD, Sultana H, Brass AL, Adametz R, Tsui M, Qian F, Montgomery RR, Lev S, Mason PW, Koski RA, Elledge SJ, Xavier RJ, Agaisse H, Fikrig E (2008) RNA interference screen for human genes associated with West Nile virus infection. Nature 455(7210):242–245. https://doi.org/10.1038/nature07207

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Le Sommer C, Barrows NJ, Bradrick SS, Pearson JL, Garcia-Blanco MA (2012) G protein-coupled receptor kinase 2 promotes flaviviridae entry and replication. PLoS Negl Trop Dis 6(9):e1820. https://doi.org/10.1371/journal.pntd.0001820

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Lee AS, Kranzusch PJ, Doudna JA, Cate JH (2016) eIF3d is an mRNA cap-binding protein that is required for specialized translation initiation. Nature 536(7614):96–99. https://doi.org/10.1038/nature18954

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Lei Y, Huang Y, Zhang H, Yu L, Zhang M, Dayton A (2011) Functional interaction between cellular p100 and the dengue virus 3′ UTR. J Gen Virol 92(Pt 4):796–806. https://doi.org/10.1099/vir.0.028597-0

    Article  PubMed  CAS  Google Scholar 

  62. Lescrinier E, Dyubankova N, Nauwelaerts K, Jones R, Herdewijn P (2010) Structure determination of the top-loop of the conserved 3′-terminal secondary structure in the genome of flaviviruses. Chembiochem Eur J Chem Biol 11(10):1404–1412. https://doi.org/10.1002/cbic.200900765

    Article  CAS  Google Scholar 

  63. Li W, Brinton MA (2001) The 3′ stem loop of the West Nile virus genomic RNA can suppress translation of chimeric mRNAs. Virology 287(1):49–61. https://doi.org/10.1006/viro.2001.1015

    Article  PubMed  CAS  Google Scholar 

  64. Li W, Li Y, Kedersha N, Anderson P, Emara M, Swiderek KM, Moreno GT, Brinton MA (2002) Cell proteins TIA-1 and TIAR interact with the 3′ stem-loop of the West Nile virus complementary minus-strand RNA and facilitate virus replication. J Virol 76(23):11989–12000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Li SC, Shiau CK, Lin WC (2008) Vir-Mir db: prediction of viral microRNA candidate hairpins. Nucleic Acids Res 36(Database issue):D184–D189. https://doi.org/10.1093/nar/gkm610

    Article  PubMed  CAS  Google Scholar 

  66. Li XF, Jiang T, Yu XD, Deng YQ, Zhao H, Zhu QY, Qin ED, Qin CF (2010) RNA elements within the 5′ untranslated region of the West Nile virus genome are critical for RNA synthesis and virus replication. J Gen Virol 91(Pt 5):1218–1223. https://doi.org/10.1099/vir.0.013854-0

    Article  PubMed  CAS  Google Scholar 

  67. Li D, Lott WB, Lowry K, Jones A, Thu HM, Aaskov J (2011) Defective interfering viral particles in acute dengue infections. PLoS One 6(4):e19447. https://doi.org/10.1371/journal.pone.0019447

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Li SH, Dong H, Li XF, Xie X, Zhao H, Deng YQ, Wang XY, Ye Q, Zhu SY, Wang HJ, Zhang B, Leng QB, Zuest R, Qin ED, Qin CF, Shi PY (2013) Rational design of a flavivirus vaccine by abolishing viral RNA 2′-O methylation. J Virol 87(10):5812–5819. https://doi.org/10.1128/JVI.02806-12

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Liang Z, Wu S, Li Y, He L, Wu M, Jiang L, Feng L, Zhang P, Huang X (2011) Activation of toll-like receptor 3 impairs the dengue virus serotype 2 replication through induction of IFN-beta in cultured hepatoma cells. PLoS One 6(8):e23346. https://doi.org/10.1371/journal.pone.0023346

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Lin RJ, Chien HL, Lin SY, Chang BL, Yu HP, Tang WC, Lin YL (2013) MCPIP1 ribonuclease exhibits broad-spectrum antiviral effects through viral RNA binding and degradation. Nucleic Acids Res 41(5):3314–3326. https://doi.org/10.1093/nar/gkt019

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Lindenbach BD (2007) Flaviviridae: the viruses and their replication. In: Knipe DM, Howley PM (eds) Fields virology. Lippincott-Raven, Philadelphia

    Google Scholar 

  72. Liu WJ, Wang XJ, Clark DC, Lobigs M, Hall RA, Khromykh AA (2006) A single amino acid substitution in the West Nile virus nonstructural protein NS2A disables its ability to inhibit alpha/beta interferon induction and attenuates virus virulence in mice. J Virol 80(5):2396–2404. https://doi.org/10.1128/JVI.80.5.2396-2404.2006

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Liu R, Yue L, Li X, Yu X, Zhao H, Jiang Z, Qin E, Qin C (2010) Identification and characterization of small sub-genomic RNAs in dengue 1-4 virus-infected cell cultures and tissues. Biochem Biophys Res Commun 391(1):1099–1103. https://doi.org/10.1016/j.bbrc.2009.12.030

    Article  PubMed  CAS  Google Scholar 

  74. Liu ZY, Li XF, Jiang T, Deng YQ, Zhao H, Wang HJ, Ye Q, Zhu SY, Qiu Y, Zhou X, Qin ED, Qin CF (2013) Novel cis-acting element within the capsid-coding region enhances flavivirus viral-RNA replication by regulating genome cyclization. J Virol 87(12):6804–6818. https://doi.org/10.1128/JVI.00243-13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Liu Y, Liu H, Zou J, Zhang B, Yuan Z (2014) Dengue virus subgenomic RNA induces apoptosis through the Bcl-2-mediated PI3k/Akt signaling pathway. Virology 448:15–25. https://doi.org/10.1016/j.virol.2013.09.016

    Article  PubMed  CAS  Google Scholar 

  76. Liu ZY, Li XF, Jiang T, Deng YQ, Ye Q, Zhao H, Yu JY, Qin CF (2016) Viral RNA switch mediates the dynamic control of flavivirus replicase recruitment by genome cyclization. Elife 5. https://doi.org/10.7554/eLife.17636

  77. Lodeiro MF, Filomatori CV, Gamarnik AV (2009) Structural and functional studies of the promoter element for dengue virus RNA replication. J Virol 83(2):993–1008. https://doi.org/10.1128/JVI.01647-08

    Article  PubMed  CAS  Google Scholar 

  78. Manokaran G, Finol E, Wang C, Gunaratne J, Bahl J, Ong EZ, Tan HC, Sessions OM, Ward AM, Gubler DJ, Harris E, Garcia-Blanco MA, Ooi EE (2015) Dengue subgenomic RNA binds TRIM25 to inhibit interferon expression for epidemiological fitness. Science 350(6257):217–221. https://doi.org/10.1126/science.aab3369

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Marceau CD, Puschnik AS, Majzoub K, Ooi YS, Brewer SM, Fuchs G, Swaminathan K, Mata MA, Elias JE, Sarnow P, Carette JE (2016) Genetic dissection of Flaviviridae host factors through genome-scale CRISPR screens. Nature 535(7610):159–163. https://doi.org/10.1038/nature18631

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Melian EB, Hinzman E, Nagasaki T, Firth AE, Wills NM, Nouwens AS, Blitvich BJ, Leung J, Funk A, Atkins JF, Hall R, Khromykh AA (2010) NS1 of flaviviruses in the Japanese encephalitis virus serogroup is a product of ribosomal frameshifting and plays a role in viral neuroinvasiveness. J Virol 84(3):1641–1647. https://doi.org/10.1128/JVI.01979-09

    Article  PubMed  CAS  Google Scholar 

  81. Miorin L, Maiuri P, Hoenninger VM, Mandl CW, Marcello A (2008) Spatial and temporal organization of tick-borne encephalitis flavivirus replicated RNA in living cells. Virology 379(1):64–77. https://doi.org/10.1016/j.virol.2008.06.025

    Article  PubMed  CAS  Google Scholar 

  82. Miorin L, Albornoz A, Baba MM, D’Agaro P, Marcello A (2012) Formation of membrane-defined compartments by tick-borne encephalitis virus contributes to the early delay in interferon signaling. Virus Res 163(2):660–666. https://doi.org/10.1016/j.virusres.2011.11.020

    Article  PubMed  CAS  Google Scholar 

  83. Miorin L, Romero-Brey I, Maiuri P, Hoppe S, Krijnse-Locker J, Bartenschlager R, Marcello A (2013) Three-dimensional architecture of tick-borne encephalitis virus replication sites and trafficking of the replicated RNA. J Virol 87(11):6469–6481. https://doi.org/10.1128/JVI.03456-12

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Mohan PM, Padmanabhan R (1991) Detection of stable secondary structure at the 3′ terminus of dengue virus type 2 RNA. Gene 108(2):185–191

    Article  CAS  PubMed  Google Scholar 

  85. Moon SL, Anderson JR, Kumagai Y, Wilusz CJ, Akira S, Khromykh AA, Wilusz J (2012) A noncoding RNA produced by arthropod-borne flaviviruses inhibits the cellular exoribonuclease XRN1 and alters host mRNA stability. RNA 18(11):2029–2040. https://doi.org/10.1261/rna.034330.112

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Moon SL, Dodd BJ, Brackney DE, Wilusz CJ, Ebel GD, Wilusz J (2015) Flavivirus sfRNA suppresses antiviral RNA interference in cultured cells and mosquitoes and directly interacts with the RNAi machinery. Virology 485:322–329. https://doi.org/10.1016/j.virol.2015.08.009

    Article  PubMed  CAS  Google Scholar 

  87. Nasirudeen AM, Wong HH, Thien P, Xu S, Lam KP, Liu DX (2011) RIG-I, MDA5 and TLR3 synergistically play an important role in restriction of dengue virus infection. PLoS Negl Trop Dis 5(1):e926. https://doi.org/10.1371/journal.pntd.0000926

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Nazmi A, Dutta K, Basu A (2011) RIG-I mediates innate immune response in mouse neurons following Japanese encephalitis virus infection. PLoS One 6(6):e21761. https://doi.org/10.1371/journal.pone.0021761

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Parameswaran P, Sklan E, Wilkins C, Burgon T, Samuel MA, Lu R, Ansel KM, Heissmeyer V, Einav S, Jackson W, Doukas T, Paranjape S, Polacek C, dos Santos FB, Jalili R, Babrzadeh F, Gharizadeh B, Grimm D, Kay M, Koike S, Sarnow P, Ronaghi M, Ding SW, Harris E, Chow M, Diamond MS, Kirkegaard K, Glenn JS, Fire AZ (2010) Six RNA viruses and forty-one hosts: viral small RNAs and modulation of small RNA repertoires in vertebrate and invertebrate systems. PLoS Pathog 6(2):e1000764. https://doi.org/10.1371/journal.ppat.1000764

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Paranjape SM, Harris E (2007) Y box-binding protein-1 binds to the dengue virus 3′-untranslated region and mediates antiviral effects. J Biol Chem 282(42):30497–30508. https://doi.org/10.1074/jbc.M705755200

    Article  PubMed  CAS  Google Scholar 

  91. Pesko KN, Fitzpatrick KA, Ryan EM, Shi PY, Zhang B, Lennon NJ, Newman RM, Henn MR, Ebel GD (2012) Internally deleted WNV genomes isolated from exotic birds in New Mexico: function in cells, mosquitoes, and mice. Virology 427(1):10–17. https://doi.org/10.1016/j.virol.2012.01.028

    Article  PubMed  CAS  Google Scholar 

  92. Phillips SL, Soderblom EJ, Bradrick SS, Garcia-Blanco MA (2016) Identification of proteins bound to dengue viral RNA in vivo reveals new host proteins important for virus replication. MBio 7(1):e01865-15. https://doi.org/10.1128/mBio.01865-15

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Pijlman GP, Funk A, Kondratieva N, Leung J, Torres S, van der Aa L, Liu WJ, Palmenberg AC, Shi PY, Hall RA, Khromykh AA (2008) A highly structured, nuclease-resistant, noncoding RNA produced by flaviviruses is required for pathogenicity. Cell Host Microbe 4(6):579–591. https://doi.org/10.1016/j.chom.2008.10.007

    Article  PubMed  CAS  Google Scholar 

  94. Polacek C, Foley JE, Harris E (2009) Conformational changes in the solution structure of the dengue virus 5′ end in the presence and absence of the 3′ untranslated region. J Virol 83(2):1161–1166. https://doi.org/10.1128/JVI.01362-08

    Article  PubMed  CAS  Google Scholar 

  95. Polacek C, Friebe P, Harris E (2009) Poly(a)-binding protein binds to the non-polyadenylated 3′ untranslated region of dengue virus and modulates translation efficiency. J Gen Virol 90(Pt 3):687–692. https://doi.org/10.1099/vir.0.007021-0

    Article  PubMed  CAS  Google Scholar 

  96. Pompon J, Manuel M, Ng GK, Wong B, Shan C, Manokaran G, Soto-Acosta R, Bradrick SS, Ooi EE, Misse D, Shi PY, Garcia-Blanco MA (2017) Dengue subgenomic flaviviral RNA disrupts immunity in mosquito salivary glands to increase virus transmission. PLoS Pathog 13(7):e1006535. https://doi.org/10.1371/journal.ppat.1006535

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Ray D, Shah A, Tilgner M, Guo Y, Zhao Y, Dong H, Deas TS, Zhou Y, Li H, Shi PY (2006) West Nile virus 5′-cap structure is formed by sequential guanine N-7 and ribose 2′-O methylations by nonstructural protein 5. J Virol 80(17):8362–8370. https://doi.org/10.1128/JVI.00814-06

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Romero TA, Tumban E, Jun J, Lott WB, Hanley KA (2006) Secondary structure of dengue virus type 4 3′ untranslated region: impact of deletion and substitution mutations. J Gen Virol 87(Pt 11):3291–3296. https://doi.org/10.1099/vir.0.82182-0

    Article  PubMed  CAS  Google Scholar 

  99. Sanchez-Vargas I, Scott JC, Poole-Smith BK, Franz AW, Barbosa-Solomieu V, Wilusz J, Olson KE, Blair CD (2009) Dengue virus type 2 infections of Aedes aegypti are modulated by the mosquito’s RNA interference pathway. PLoS Pathog 5(2):e1000299. https://doi.org/10.1371/journal.ppat.1000299

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Savidis G, McDougall WM, Meraner P, Perreira JM, Portmann JM, Trincucci G, John SP, Aker AM, Renzette N, Robbins DR, Guo Z, Green S, Kowalik TF, Brass AL (2016) Identification of Zika virus and dengue virus dependency factors using functional genomics. Cell Rep 16(1):232–246. https://doi.org/10.1016/j.celrep.2016.06.028

    Article  PubMed  CAS  Google Scholar 

  101. Scherbik SV, Paranjape JM, Stockman BM, Silverman RH, Brinton MA (2006) RNase L plays a role in the antiviral response to West Nile virus. J Virol 80(6):2987–2999. https://doi.org/10.1128/JVI.80.6.2987-2999.2006

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Schirtzinger EE, Andrade CC, Devitt N, Ramaraj T, Jacobi JL, Schilkey F, Hanley KA (2015) Repertoire of virus-derived small RNAs produced by mosquito and mammalian cells in response to dengue virus infection. Virology 476:54–60. https://doi.org/10.1016/j.virol.2014.11.019

    Article  PubMed  CAS  Google Scholar 

  103. Schnettler E, Sterken MG, Leung JY, Metz SW, Geertsema C, Goldbach RW, Vlak JM, Kohl A, Khromykh AA, Pijlman GP (2012) Noncoding flavivirus RNA displays RNA interference suppressor activity in insect and mammalian cells. J Virol 86(24):13486–13500. https://doi.org/10.1128/JVI.01104-12

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Schuessler A, Funk A, Lazear HM, Cooper DA, Torres S, Daffis S, Jha BK, Kumagai Y, Takeuchi O, Hertzog P, Silverman R, Akira S, Barton DJ, Diamond MS, Khromykh AA (2012) West Nile virus non-coding subgenomic RNA contributes to viral evasion of type I interferon-mediated antiviral response. J Virol. https://doi.org/10.1128/JVI.00207-12

  105. Sessions OM, Barrows NJ, Souza-Neto JA, Robinson TJ, Hershey CL, Rodgers MA, Ramirez JL, Dimopoulos G, Yang PL, Pearson JL, Garcia-Blanco MA (2009) Discovery of insect and human dengue virus host factors. Nature 458(7241):1047–1050. https://doi.org/10.1038/nature07967

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Silva PA, Pereira CF, Dalebout TJ, Spaan WJ, Bredenbeek PJ (2010) An RNA pseudoknot is required for production of yellow fever virus subgenomic RNA by the host nuclease XRN1. J Virol 84(21):11395–11406. https://doi.org/10.1128/JVI.01047-10

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Szretter KJ, Daniels BP, Cho H, Gainey MD, Yokoyama WM, Gale M Jr, Virgin HW, Klein RS, Sen GC, Diamond MS (2012) 2′-O methylation of the viral mRNA cap by West Nile virus evades ifit1-dependent and-independent mechanisms of host restriction in vivo. PLoS Pathog 8(5):e1002698. https://doi.org/10.1371/journal.ppat.1002698

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Sztuba-Solinska J, Teramoto T, Rausch JW, Shapiro BA, Padmanabhan R, Le Grice SF (2013) Structural complexity of dengue virus untranslated regions: cis-acting RNA motifs and pseudoknot interactions modulating functionality of the viral genome. Nucleic Acids Res 41(9):5075–5089. https://doi.org/10.1093/nar/gkt203

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Tapia K, Kim WK, Sun Y, Mercado-Lopez X, Dunay E, Wise M, Adu M, Lopez CB (2013) Defective viral genomes arising in vivo provide critical danger signals for the triggering of lung antiviral immunity. PLoS Pathog 9(10):e1003703. https://doi.org/10.1371/journal.ppat.1003703

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Tilgner M, Shi PY (2004) Structure and function of the 3′ terminal six nucleotides of the west nile virus genome in viral replication. J Virol 78(15):8159–8171. https://doi.org/10.1128/JVI.78.15.8159-8171.2004

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Tsai YT, Chang SY, Lee CN, Kao CL (2009) Human TLR3 recognizes dengue virus and modulates viral replication in vitro. Cell Microbiol 11(4):604–615. https://doi.org/10.1111/j.1462-5822.2008.01277.x

    Article  PubMed  CAS  Google Scholar 

  112. Vashist S, Anantpadma M, Sharma H, Vrati S (2009) La protein binds the predicted loop structures in the 3′ non-coding region of Japanese encephalitis virus genome: role in virus replication. J Gen Virol 90(Pt 6):1343–1352. https://doi.org/10.1099/vir.0.010850-0

    Article  PubMed  CAS  Google Scholar 

  113. Vashist S, Bhullar D, Vrati S (2011) La protein can simultaneously bind to both 3′- and 5′-noncoding regions of Japanese encephalitis virus genome. DNA Cell Biol 30(6):339–346. https://doi.org/10.1089/dna.2010.1114

    Article  PubMed  CAS  Google Scholar 

  114. Viktorovskaya OV, Greco TM, Cristea IM, Thompson SR (2016) Identification of RNA binding proteins associated with dengue virus RNA in infected cells reveals temporally distinct host factor requirements. PLoS Negl Trop Dis 10(8):e0004921. https://doi.org/10.1371/journal.pntd.0004921

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Villordo SM, Gamarnik AV (2013) Differential RNA sequence requirement for dengue virus replication in mosquito and mammalian cells. J Virol 87(16):9365–9372. https://doi.org/10.1128/JVI.00567-13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Villordo SM, Filomatori CV, Sanchez-Vargas I, Blair CD, Gamarnik AV (2015) Dengue virus RNA structure specialization facilitates host adaptation. PLoS Pathog 11(1):e1004604. https://doi.org/10.1371/journal.ppat.1004604

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Ward AM, Bidet K, Yinglin A, Ler SG, Hogue K, Blackstock W, Gunaratne J, Garcia-Blanco MA (2011) Quantitative mass spectrometry of DENV-2 RNA-interacting proteins reveals that the DEAD-box RNA helicase DDX6 binds the DB1 and DB2 3′ UTR structures. RNA Biol 8(6):1173–1186. https://doi.org/10.4161/rna.8.6.17836

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Ward AM, Calvert ME, Read LR, Kang S, Levitt BE, Dimopoulos G, Bradrick SS, Gunaratne J, Garcia-Blanco MA (2016) The Golgi associated ERI3 is a Flavivirus host factor. Sci Rep 6:34379. https://doi.org/10.1038/srep34379

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Wei Y, Qin C, Jiang T, Li X, Zhao H, Liu Z, Deng Y, Liu R, Chen S, Yu M, Qin E (2009) Translational regulation by the 3′ untranslated region of the dengue type 2 virus genome. Am J Trop Med Hyg 81(5):817–824. https://doi.org/10.4269/ajtmh.2009.08-0595

    Article  PubMed  CAS  Google Scholar 

  120. Welsch S, Miller S, Romero-Brey I, Merz A, Bleck CK, Walther P, Fuller SD, Antony C, Krijnse-Locker J, Bartenschlager R (2009) Composition and three-dimensional architecture of the dengue virus replication and assembly sites. Cell Host Microbe 5(4):365–375. https://doi.org/10.1016/j.chom.2009.03.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Westaway EG, Mackenzie JM, Kenney MT, Jones MK, Khromykh AA (1997) Ultrastructure of Kunjin virus-infected cells: colocalization of NS1 and NS3 with double-stranded RNA, and of NS2B with NS3, in virus-induced membrane structures. J Virol 71(9):6650–6661

    PubMed  PubMed Central  CAS  Google Scholar 

  122. Yoo JS, Kim CM, Kim JH, Kim JY, Oh JW (2009) Inhibition of Japanese encephalitis virus replication by peptide nucleic acids targeting cis-acting elements on the plus- and minus-strands of viral RNA. Antivir Res 82(3):122–133. https://doi.org/10.1016/j.antiviral.2009.02.187

    Article  PubMed  CAS  Google Scholar 

  123. You S, Padmanabhan R (1999) A novel in vitro replication system for dengue virus. Initiation of RNA synthesis at the 3′-end of exogenous viral RNA templates requires 5′- and 3′-terminal complementary sequence motifs of the viral RNA. J Biol Chem 274(47):33714–33722

    Article  CAS  PubMed  Google Scholar 

  124. You S, Falgout B, Markoff L, Padmanabhan R (2001) In vitro RNA synthesis from exogenous dengue viral RNA templates requires long range interactions between 5′- and 3′-terminal regions that influence RNA structure. J Biol Chem 276(19):15581–15591. https://doi.org/10.1074/jbc.M010923200

    Article  PubMed  CAS  Google Scholar 

  125. Yu L, Markoff L (2005) The topology of bulges in the long stem of the flavivirus 3′ stem-loop is a major determinant of RNA replication competence. J Virol 79(4):2309–2324. https://doi.org/10.1128/JVI.79.4.2309-2324.2005

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Yu L, Nomaguchi M, Padmanabhan R, Markoff L (2008) Specific requirements for elements of the 5′ and 3′ terminal regions in flavivirus RNA synthesis and viral replication. Virology 374(1):170–185. https://doi.org/10.1016/j.virol.2007.12.035

    Article  PubMed  CAS  Google Scholar 

  127. Zhang R, Miner JJ, Gorman MJ, Rausch K, Ramage H, White JP, Zuiani A, Zhang P, Fernandez E, Zhang Q, Dowd KA, Pierson TC, Cherry S, Diamond MS (2016) A CRISPR screen defines a signal peptide processing pathway required by flaviviruses. Nature 535(7610):164–168. https://doi.org/10.1038/nature18625

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bidet, K., Garcia-Blanco, M.A. (2018). Flaviviral RNA Structures and Their Role in Replication and Immunity. In: Hilgenfeld, R., Vasudevan, S. (eds) Dengue and Zika: Control and Antiviral Treatment Strategies. Advances in Experimental Medicine and Biology, vol 1062. Springer, Singapore. https://doi.org/10.1007/978-981-10-8727-1_4

Download citation

Publish with us

Policies and ethics