Skip to main content

The Transactions of NS3 and NS5 in Flaviviral RNA Replication

  • Chapter
  • First Online:
Dengue and Zika: Control and Antiviral Treatment Strategies

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1062))

Abstract

Dengue virus (DENV) replication occurs in virus-induced vesicles that contain the replication complex (RC) where viral RNA, viral proteins and host proteins participate in RNA-RNA, RNA-protein and protein-protein interactions to ensure viral genome synthesis. However, the details of the multitude of interactions involved in the biogenesis of the infectious virion are not fully understood. In this review, we will focus on the interaction between non-structural (NS) proteins NS3 and NS5, as well as their interactions with viral RNA and briefly also the interaction of NS5 with the host nuclear transport receptor protein importin-α. The multifunctional NS3 protease/helicase and NS5 methyltransferase (MTase)/RNA-dependent RNA polymerase (RdRp) contain all the enzymatic activities required to synthesize the viral RNA genome. The success stories of drug discovery and development with Hepatitis C virus (HCV), a member of the Flaviviridae family, has led to the view that DENV NS3 and NS5 may be attractive antiviral drug targets. However, more than 10 years of intensive research effort by Novatis has revealed that they are not “low hanging fruits” and therefore, the search for potent directly acting antivirals (DAAs) remains a pipeline goal for several medium to large drug discovery enterprises. The effort to discover DAAs for DENV has been boosted by the epidemic outbreak of the closely related flavivirus member – Zika virus (ZIKV). Because the viral RNA replication occurs within a molecular machine that is composed several viral and host proteins, much interest has turned to characterising functionally essential protein-protein interactions in order to identify potential allosteric inhibitor binding sites within the RC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akey DL, Brown WC, Dutta S et al (2014) Flavivirus NS1 structures reveal surfaces for associations with membranes and the immune system. Science 343:881–885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Aleshin AE, Shiryaev SA, Strongin AY et al (2007) Structural evidence for regulation and specificity of flaviviral proteases and evolution of the Flaviviridae fold. Protein Sci 16:795–806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Amberg SM, Nestorowicz A, McCourt DW et al (1994) NS2B-3 proteinase-mediated processing in the yellow fever virus structural region: in vitro and in vivo studies. J Virol 68:3794–3802

    PubMed  PubMed Central  CAS  Google Scholar 

  4. Amberg SM, Rice CM (1999) Mutagenesis of the NS2B-NS3-mediated cleavage site in the flavivirus capsid protein demonstrates a requirement for coordinated processing. J Virol 73:8083–8094

    PubMed  PubMed Central  CAS  Google Scholar 

  5. Arias CF, Preugschat F, Strauss JH (1993) Dengue 2 virus NS2B and NS3 form a stable complex that can cleave NS3 within the helicase domain. Virology 193:888–899

    Article  CAS  PubMed  Google Scholar 

  6. Ashour J, Laurent-Rolle M, Shi PY et al (2009) NS5 of dengue virus mediates STAT2 binding and degradation. J Virol 83:5408–5418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bartelma G, Padmanabhan R (2002) Expression, purification, and characterization of the RNA 5′-triphosphatase activity of dengue virus type 2 nonstructural protein 3. Virology 299:122–132

    Article  CAS  PubMed  Google Scholar 

  8. Benarroch D, Selisko B, Locatelli GA et al (2004) The RNA helicase, nucleotide 5′-triphosphatase, and RNA 5′-triphosphatase activities of Dengue virus protein NS3 are Mg2+−dependent and require a functional Walker B motif in the helicase catalytic core. Virology 328:208–218

    Article  CAS  PubMed  Google Scholar 

  9. Brooks AJ, Johansson M, John AV et al (2002) The interdomain region of dengue NS5 protein that binds to the viral helicase NS3 contains independently functional importin beta 1 and importin alpha/beta-recognized nuclear localization signals. J Biol Chem 277:36399–36407

    Article  PubMed  Google Scholar 

  10. Cahour A, Falgout B, Lai CJ (1992) Cleavage of the dengue virus polyprotein at the NS3/NS4A and NS4B/NS5 junctions is mediated by viral protease NS2B-NS3, whereas NS4A/NS4B may be processed by a cellular protease. J Virol 66:1535–1542

    PubMed  PubMed Central  CAS  Google Scholar 

  11. Chambers TJ, Grakoui A, Rice CM (1991) Processing of the yellow fever virus nonstructural polyprotein: a catalytically active NS3 proteinase domain and NS2B are required for cleavages at dibasic sites. J Virol 65:6042–6050

    PubMed  PubMed Central  CAS  Google Scholar 

  12. Chambers TJ, Hahn CS, Galler R et al (1990) Flavivirus genome organization, expression, and replication. Annu Rev Microbiol 44:649–688

    Article  CAS  PubMed  Google Scholar 

  13. Chen CJ, Kuo MD, Chien LJ et al (1997) RNA-protein interactions: Involvement of NS3, NS5, and 3′ noncoding regions of Japanese encephalitis virus genomic RNA. J Virol 71:3466–3473

    PubMed  PubMed Central  CAS  Google Scholar 

  14. Collins TJ (2007) ImageJ for microscopy. BioTechniques 43:25–30

    Article  PubMed  Google Scholar 

  15. Cui T, Sugrue RJ, Xu Q et al (1998) Recombinant dengue virus type 1 NS3 protein exhibits specific viral RNA binding and NTPase activity regulated by the NS5 protein. Virology 246:409–417

    Article  CAS  PubMed  Google Scholar 

  16. Donnelly M, Verhagen J, Elliott G (2007) RNA binding by the herpes simplex virus type 1 nucleocytoplasmic shuttling protein UL47 is mediated by an N-terminal arginine-rich domain that also functions as its nuclear localization signal. J Virol 81:2283–2296

    Article  CAS  PubMed  Google Scholar 

  17. Egloff MP, Benarroch D, Selisko B et al (2002) An RNA cap (nucleoside-2′-O-)-methyltransferase in the flavivirus RNA polymerase NS5: crystal structure and functional characterization. EMBO J 21:2757–2768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Egloff MP, Decroly E, Malet H et al (2007) Structural and functional analysis of methylation and 5′-RNA sequence requirements of short capped RNAs by the methyltransferase domain of dengue virus NS5. J Mol Biol 372:723–736

    Article  CAS  PubMed  Google Scholar 

  19. Elster C, Larsen K, Gagnon J et al (1997) Influenza virus M1 protein binds to RNA through its nuclear localization signal. J Gen Virol 78(Pt 7):1589–1596

    Article  CAS  PubMed  Google Scholar 

  20. Erbel P, Schiering N, D’Arcy A et al (2006) Structural basis for the activation of flaviviral NS3 proteases from Dengue and West Nile virus. Nat Struct Mol Biol 13:372–373

    Article  CAS  Google Scholar 

  21. Forwood JK, Brooks A, Briggs LJ, Jans DA, Vasudevan SG (1999) The 37 amino acid linker between the putative methyltransferase and polymerase domains of dengue virus NS5 protein contains a functional nuclear localization signal. Biochem Biophys Res Comm 257:731–737

    Google Scholar 

  22. Gorbalenya AE, Donchenko AP, Koonin EV et al (1989) N-terminal domains of putative helicases of flavi- and pestiviruses may be serine proteases. Nucleic Acids Res 17:3889–3897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gutsche I, Coulibaly F, Voss JE et al (2011) Secreted dengue virus nonstructural protein NS1 is an atypical barrel-shaped high-density lipoprotein. Proc Natl Acad Sci U S A 108:8003–8008

    Article  PubMed  PubMed Central  Google Scholar 

  24. Heaton NS, Perera R, Berger KL et al (2010) Dengue virus nonstructural protein 3 redistributes fatty acid synthase to sites of viral replication and increases cellular fatty acid synthesis. Proc Natl Acad Sci U S A 107:17345–17350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hodge K, Tunghirun C, Kamkaew M et al (2016) Identification of a conserved RdRp-RNA interface required for flaviviral replication. J Biol Chem 291:17437–17449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Iglesias NG, Filomatori CV, Gamarnik AV (2011) The F1 motif of dengue virus polymerase NS5 is involved in promoter-dependent RNA synthesis. J Virol 85:5745–5756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Issur M, Geiss BJ, Bougie I et al (2009) The flavivirus NS5 protein is a true RNA guanylyltransferase that catalyzes a two-step reaction to form the RNA cap structure. RNA 15:2340–2350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Johansson M, Brooks AJ, Jans DA et al (2001) A small region of the dengue virus-encoded RNA-dependent RNA polymerase, NS5, confers interaction with both the nuclear transport receptor importin-beta and the viral helicase, NS3. J Gen Virol 82:735–745

    Article  CAS  PubMed  Google Scholar 

  29. Kapoor M, Zhang LW, Ramachandra M et al (1995) Association between NS3 and NS5 proteins of dengue virus type 2 in the putative RNA replicase is linked to differential phosphorylation of NS5. J Biol Chem 270:19100–19106

    Article  CAS  PubMed  Google Scholar 

  30. Kelley JF, Kaufusi PH, Volper EM et al (2011) Maturation of dengue virus nonstructural protein 4B in monocytes enhances production of dengue hemorrhagic fever-associated chemokines and cytokines. Virology 418:27–39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Klema VJ, Ye M, Hindupur A et al (2016) Dengue Virus Nonstructural Protein 5 (NS5) Assembles into a Dimer with a Unique Methyltransferase and Polymerase Interface. PLoS Pathog 12:e1005451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kosugi S, Hasebe M, Tomita M et al (2009) Systematic identification of cell cycle-dependent yeast nucleocytoplasmic shuttling proteins by prediction of composite motifs. Proc Natl Acad Sci U S A 106:10171–10176

    Article  PubMed  PubMed Central  Google Scholar 

  33. Kroschewski H, Lim SP, Butcher RE et al (2008) Mutagenesis of the dengue virus type 2 NS5 methyltransferase domain. J Biol Chem 283:19410–19421

    Article  CAS  PubMed  Google Scholar 

  34. Kumar A, Buhler S, Selisko B et al (2013) Nuclear localization of dengue virus nonstructural protein 5 does not strictly correlate with efficient viral RNA replication and inhibition of type I interferon signaling. J Virol 87:4545–4557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Leung D, Schroder K, White H et al (2001) Activity of recombinant dengue 2 virus NS3 protease in the presence of a truncated NS2B co-factor, small peptide substrates, and inhibitors. J Biol Chem 276:45762–45771

    Article  CAS  PubMed  Google Scholar 

  36. Li HT, Clum S, You SH et al (1999) The serine protease and RNA-stimulated nucleoside triphosphatase and RNA helicase functional domains of Dengue virus type 2 NS3 converge within a region of 20 amino acids. J Virol 73:3108–3116

    PubMed  PubMed Central  CAS  Google Scholar 

  37. Li J, Lim SP, Beer D et al (2005) Functional profiling of recombinant NS3 proteases from all four serotypes of dengue virus using tetrapeptide and octapeptide substrate libraries. J Biol Chem 280:28766–28774

    Article  CAS  PubMed  Google Scholar 

  38. Lim SP, Koh JH, Seh CC et al (2013) A crystal structure of the dengue virus non-structural protein 5 (NS5) polymerase delineates interdomain amino acid residues that enhance its thermostability and de novo initiation activities. J Biol Chem 288:31105–31114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lindenbach BD, Rice CM (1999) Genetic interaction of flavivirus nonstructural proteins NS1 and NS4A as a determinant of replicase function. J Virol 73:4611–4621

    PubMed  PubMed Central  CAS  Google Scholar 

  40. Lindenbach BD, Thiel H, Rice CM (2007) Flaviviridae: the viruses and their replication. In: Fields virology, 5th edn. Wolters kluwer/Lippincott Williams & Wilkins, Philadelphia, pp 1101–1152

    Google Scholar 

  41. Lobigs M (1993) Flavivirus premembrane protein cleavage and spike heterodimer secretion require the function of the viral proteinase NS3. Proc Natl Acad Sci U S A 90:6218–6222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lu G, Gong P (2013) Crystal Structure of the full-length Japanese encephalitis virus NS5 reveals a conserved methyltransferase-polymerase interface. PLoS Pathog 9:e1003549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Luo D, Wei N, Doan DN et al (2010) Flexibility between the protease and helicase domains of the dengue virus NS3 protein conferred by the linker region and its functional implications. J Biol Chem 285:18817–18827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Luo D, Xu T, Hunke C et al (2008) Crystal structure of the NS3 protease-helicase from dengue virus. J Virol 82:173–183

    Article  CAS  PubMed  Google Scholar 

  45. Mackenzie JM, Khromykh AA, Jones MK et al (1998) Subcellular localization and some biochemical properties of the flavivirus Kunjin nonstructural proteins NS2A and NS4A. Virology 245:203–215

    Article  CAS  PubMed  Google Scholar 

  46. Mairiang D, Zhang H, Sodja A et al (2013) Identification of new protein interactions between dengue fever virus and its hosts, human and mosquito. PLoS One 8:e53535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Malet H, Egloff MP, Selisko B et al (2007) Crystal structure of the RNA polymerase domain of the West Nile virus non-structural protein 5. J Biol Chem 282:10678–10689

    Article  CAS  PubMed  Google Scholar 

  48. Marfori M, Lonhienne TG, Forwood JK et al (2012) Structural basis of high-affinity nuclear localization signal interactions with importin-alpha. Traffic 13:532–548

    Article  CAS  PubMed  Google Scholar 

  49. Mazzon M, Jones M, Davidson A et al (2009) Dengue virus NS5 inhibits interferon-alpha signaling by blocking signal transducer and activator of transcription 2 phosphorylation. J Infect Dis 200:1261–1270

    Article  CAS  PubMed  Google Scholar 

  50. Medin CL, Fitzgerald KA, Rothman AL (2005) Dengue virus nonstructural protein NS5 induces interleukin-8 transcription and secretion. J Virol 79:11053–11061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Moreland NJ, Tay MY, Lim E et al (2012) Monoclonal antibodies against dengue NS2B and NS3 proteins for the study of protein interactions in the flaviviral replication complex. J Virol Methods 179:97–103

    Article  CAS  PubMed  Google Scholar 

  52. Morrison J, Laurent-Rolle M, Maestre AM et al (2013) Dengue virus co-opts UBR4 to degrade STAT2 and antagonize type I interferon signaling. PLoS Pathog 9:e1003265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Muller DA, Landsberg MJ, Bletchly C et al (2012) Structure of the dengue virus glycoprotein non-structural protein 1 by electron microscopy and single-particle analysis. J Gen Virol 93:771–779

    Article  CAS  PubMed  Google Scholar 

  54. Muller DA, Young PR (2013) The flavivirus NS1 protein: molecular and structural biology, immunology, role in pathogenesis and application as a diagnostic biomarker. Antivir Res 98:192–208

    Article  CAS  PubMed  Google Scholar 

  55. Noble CG, Chen YL, Dong H et al (2010) Strategies for development of Dengue virus inhibitors. Antivir Res 85:450–462

    Article  CAS  PubMed  Google Scholar 

  56. Noble CG, Seh CC, Chao AT et al (2012) Ligand-bound structures of the dengue virus protease reveal the active conformation. J Virol 86:438–446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Phong WY, Moreland NJ, Lim SP et al (2011) Dengue protease activity: the structural integrity and interaction of NS2B with NS3 protease and its potential as a drug target. Biosci Rep 31:399–409

    Article  PubMed  Google Scholar 

  58. Potisopon S, Priet S, Collet A et al (2014) The methyltransferase domain of dengue virus protein NS5 ensures efficient RNA synthesis initiation and elongation by the polymerase domain. Nucleic Acids Res 42:11642–11656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Preugschat F, Strauss JH (1991) Processing of nonstructural proteins NS4A and NS4B of dengue 2 virus in vitro and in vivo. Virology 185:689–697

    Article  CAS  PubMed  Google Scholar 

  60. Preugschat F, Yao CW, Strauss JH (1990) In vitro processing of dengue virus type 2 nonstructural proteins NS2A, NS2B, and NS3. J Virol 64:4364–4374

    PubMed  PubMed Central  CAS  Google Scholar 

  61. Pryor MJ, Rawlinson SM, Butcher RE et al (2007) Nuclear localization of dengue virus nonstructural protein 5 through its importin alpha/beta-recognized nuclear localization sequences is integral to viral infection. Traffic 8:795–807

    Article  CAS  PubMed  Google Scholar 

  62. Rawlinson SM, Pryor MJ, Wright PJ et al (2009) CRM1-mediated nuclear export of dengue virus RNA polymerase NS5 modulates interleukin-8 induction and virus production. J Biol Chem 284:15589–15597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Selisko B, Peyrane FF, Canard B et al (2010) Biochemical characterization of the (nucleoside-2′O)-methyltransferase activity of dengue virus protein NS5 using purified capped RNA oligonucleotides (7Me)GpppAC(n) and GpppAC(n). J Gen Virol 91:112–121

    Article  CAS  PubMed  Google Scholar 

  64. Shi PY (2014) Structural biology. Unraveling a flavivirus enigma. Science 343:849–850

    Article  CAS  PubMed  Google Scholar 

  65. Shiryaev SA, Chernov AV, Aleshin AE et al (2009) NS4A regulates the ATPase activity of the NS3 helicase: a novel cofactor role of the non-structural protein NS4A from West Nile virus. J Gen Virol 90:2081–2085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Su XC, Ozawa K, Qi R et al (2009) NMR analysis of the dynamic exchange of the NS2B cofactor between open and closed conformations of the West Nile virus NS2B-NS3 protease. PLoS Negl Trop Dis 3:e561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Tajima S, Takasaki T, Kurane I (2011) Restoration of replication-defective dengue type 1 virus bearing mutations in the N-terminal cytoplasmic portion of NS4A by additional mutations in NS4B. Arch Virol 156:63–69

    Article  CAS  PubMed  Google Scholar 

  68. Takahashi H, Takahashi C, Moreland NJ et al (2012) Establishment of a robust dengue virus NS3-NS5 binding assay for identification of protein-protein interaction inhibitors. Antivir Res 96:305–314

    Article  CAS  PubMed  Google Scholar 

  69. Tay MY, Fraser JE, Chan WK et al (2013) Nuclear localization of dengue virus (DENV) 1-4 non-structural protein 5; protection against all 4 DENV serotypes by the inhibitor Ivermectin. Antivir Res 99:301–306

    Article  CAS  PubMed  Google Scholar 

  70. Tay MY, Saw WG, Zhao Y et al (2014) The C-terminal 50 amino acid residues of Dengue NS3 protein are important for NS3-NS5 interaction and viral replication. J Biol Chem 290:2379–2394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Tay MY, Smith K, Ng IH et al (2016) The C-terminal 18 amino acid region of Dengue virus NS5 regulates its subcellular localization and contains a conserved arginine residue essential for infectious virus production. PLoS Pathog 12:e1005886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Tomassini JE, Boots E, Gan L et al (2003) An in vitro Flaviviridae replicase system capable of authentic RNA replication. Virology 313:274–285

    Article  CAS  PubMed  Google Scholar 

  73. Uchil PD, Satchidanandam V (2003) Architecture of the flaviviral replication complex. Protease, nuclease, and detergents reveal encasement within double-layered membrane compartments. J Biol Chem 278:24388–24398

    Article  CAS  PubMed  Google Scholar 

  74. Umareddy I, Chao A, Sampath A et al (2006) Dengue virus NS4B interacts with NS3 and dissociates it from single-stranded RNA. J Gen Virol 87:2605–2614

    Article  CAS  PubMed  Google Scholar 

  75. Vasudevan SG, Johansson M, Brooks AJ et al (2001) Characterisation of inter- and intra-molecular interactions of the dengue virus RNA dependent RNA polymerase as potential drug targets. Farmaco 56:33–36

    Article  CAS  PubMed  Google Scholar 

  76. Verdine GL, Hilinski GJ (2012) Stapled peptides for intracellular drug targets. Methods Enzymol 503:3–33

    Article  CAS  PubMed  Google Scholar 

  77. Wang CC, Huang ZS, Chiang PL et al (2009) Analysis of the nucleoside triphosphatase, RNA triphosphatase, and unwinding activities of the helicase domain of dengue virus NS3 protein. FEBS Lett 583:691–696

    Article  CAS  PubMed  Google Scholar 

  78. Welsch S, Miller S, Romero-Brey I et al (2009) Composition and three-dimensional architecture of the dengue virus replication and assembly sites. Cell Host Microbe 5:365–375

    Article  CAS  PubMed  Google Scholar 

  79. Wengler G (1993) The NS 3 nonstructural protein of flaviviruses contains an RNA triphosphatase activity. Virology 197:265–273

    Article  CAS  PubMed  Google Scholar 

  80. Xu T, Sampath A, Chao A et al (2005) Structure of the Dengue virus helicase/nucleoside triphosphatase catalytic domain at a resolution of 2.4 A. J Virol 79:10278–10288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Yap TL, Xu T, Chen YL et al (2007) Crystal structure of the dengue virus RNA-dependent RNA polymerase catalytic domain at 1.85-angstrom resolution. J Virol 81:4753–4765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Yik JH, Chen R, Pezda AC et al (2004) A human immunodeficiency virus type 1 Tat-like arginine-rich RNA-binding domain is essential for HEXIM1 to inhibit RNA polymerase II transcription through 7SK snRNA-mediated inactivation of P-TEFb. Mol Cell Biol 24:5094–5105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Yon C, Teramoto T, Mueller N et al (2005) Modulation of the nucleoside triphosphatase/RNA helicase and 5′-RNA triphosphatase activities of Dengue virus type 2 nonstructural protein 3 (NS3) by interaction with NS5, the RNA-dependent RNA polymerase. J Biol Chem 280:27412–27419

    Article  CAS  PubMed  Google Scholar 

  84. Yu L, Takeda K, Markoff L (2013) Protein-protein interactions among West Nile non-structural proteins and transmembrane complex formation in mammalian cells. Virology 446:365–377

    Article  CAS  PubMed  Google Scholar 

  85. Yusof R, Clum S, Wetzel M et al (2000) Purified NS2B/NS3 serine protease of dengue virus type 2 exhibits cofactor NS2B dependence for cleavage of substrates with dibasic amino acids in vitro. J Biol Chem 275:9963–9969

    Article  CAS  PubMed  Google Scholar 

  86. Zhang L, Mohan PM, Padmanabhan R (1992) Processing and localization of Dengue virus type 2 polyprotein precursor NS3-NS4A-NS4B-NS5. J Virol 66:7549–7554

    PubMed  PubMed Central  CAS  Google Scholar 

  87. Zhang Z, Li Y, Loh YR et al (2016) Crystal structure of unlinked NS2B-NS3 protease from Zika virus. Science 354:1597–1600

    Article  CAS  PubMed  Google Scholar 

  88. Zhao Y, Moreland NJ, Tay MY et al (2014) Identification and molecular characterization of human antibody fragments specific for dengue NS5 protein. Virus Res 179:225–230

    Article  CAS  PubMed  Google Scholar 

  89. Zhao Y, Soh S, Zheng J et al (2015a) A crystal structure of the dengue virus NS5 protein reveals a novel inter-domain interface essential for protein flexibility and virus replication. PLoS Pathog 11:e1004682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Zhao Y, Soh TS, Lim SP et al (2015b) Molecular basis for specific viral RNA recognition and 2′-O-ribose methylation by the dengue virus nonstructural protein 5 (NS5). Proc Natl Acad Sci U S A 112:14834–14839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Zhou Y, Ray D, Zhao Y et al (2007) Structure and function of flavivirus NS5 methyltransferase. J Virol 81:3891–3903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Zou G, Chen YL, Dong H et al (2011) Functional analysis of two cavities in flavivirus NS5 polymerase. J Biol Chem 286:14362–14372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Zou J, Lee LT, Wang QY et al (2015a) Mapping the interactions between the NS4B and NS3 proteins of dengue virus. J Virol 89:3471–3483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Zou J, Xie X, Lee le T et al (2014) Dimerization of flavivirus NS4B protein. J Virol 88:3379–3391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Zou J, Xie X, Wang QY et al (2015b) Characterization of dengue virus NS4A and NS4B protein interaction. J Virol 89:3455–3470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Zust R, Dong H, Li XF et al (2013) Rational design of a live attenuated dengue vaccine: 2′-o-methyltransferase mutants are highly attenuated and immunogenic in mice and macaques. PLoS Pathog 9:e1003521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank our past and present collaborators David A. Jans, Jade K. Forwood, Andrew Brooks, Magnus Johansson, Andrew Davidson, Julien Lescar, Dahai Luo, Yap T.L., Siew Pheng Lim, Nicole J. Moreland, Indira Umareddy, Aruna Sampath, Yongqian Zhao, Ivan H.W. Ng, Kitti W.K. Chan, Wuan Geok Saw, Gerhard Gruber, Crystall Swarbrick, Shu Ann Chan, Kate Smith, Gottfried Otting, Zheng Yin, Li Shang and Rolf Hilgenfeld for their important contributions to understanding of flavivirus NS proteins. The research on NS3 and NS5 interactions of flaviviruses in the Vasudevan lab is supported by National Medical Research Council (NMRC/CBRG/0103/2016) and National Research Foundation (NRF-CRP17-2017-04) in Singapore.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subhash G. Vasudevan .

Editor information

Editors and Affiliations

Discussion of Chapter 11 in Dengue and Zika: Control and Antiviral Treatment Strategies

Discussion of Chapter 11 in Dengue and Zika: Control and Antiviral Treatment Strategies

This discussion was held at the 2nd Advanced Study Week on Emerging Viral Diseases at Praia do Tofo, Mozambique.Transcribed by Hilgenfeld R and Vasudevan SG (Eds); approved by Dr. Subhash Vasudevan.

  • Félix Rey: Very nice story! What did you make of the other NLSs that were postulated before? I’m referring to the NLS in the folded part of RdRp domain.

  • Subhash Vasudevan: Right! You’re talking about what we call the conventional α/βNLS between residues 369 and 405. These are sequences that were actually idenified based on work that was carried out with peptide fragments fused to β-galactosidase or to GFP. However, for DENV, these do not appear to be functional in the context of the full-length NS5 in the cell-based assesments. I think the caveat is that one really has to look at localization in the context of full-length NS5. Presentation of the NLS is very important as we show in our current work with the P884T mutation. But having said that, I still believe that the thumb subdomain region of NS5 where the α/βNLS in the folded part occurs is very dynamic and it’s possible that in the context of some viruses like ZIKV NS5 for instance, it may be important. What I haven´t discussed here is that ZIKV NS5 is also localized to the nucleus much more strongly than some of the DENVs – and moreover the NS5 forms distinct nuclear structures. Why these structures form is not known but the C-terminal part of Zika virus NS5 does not contain a NLS like what we have described for DENV NS5. And there also doesn’t appear to be any kind of potential phosphorylation regulation as we have suggested for DENV 4 C-terminal NLS. I should add that this suggestion still needs to be verified experimentally.

  • Paul Young: I know you don’t know the answer, but can you speculate on why at least the vast majority of NS5 actually shows up in the nucleus? And what’s the chronology of that? How early in an infection does NS5 transfer? Is it late in infection? Is it during when you are expecting most replication?

  • Subhash Vasudevan: DENV2 NS5 and ZIKV NS5 start to go into the nucleus as early as about 12 hours post infection. And what is the role? While the NS5 P884T mutant virus (in DENV) suggested that it is replicating like a wild-type even though it is mostly localized to the cytoplasm. We have not clearly investigated what the downstream effect could be of the mislocalization – I think, as Julien Lescar pointed out in his talk, these NS5s may have evolved to engage different host factors a spart of their pathogenesis mechanism. It is evident when you compare JEV NS5 structure with our DENV 3 NS5. The DENV 3 NS5 seems to form this very nice compact structure that shows extensive interaction between the methyltransferase and the RdRp domains, whereas in the JEV NS5, there is not much of that. It is possible that these might interact with host proteins that could modulate events that results in the varying pathogenesis mechanisms but more work needs to be done in this area. {Note: Two publications since the meeting have shown that NS5 can cause splice variations that could modulate genes involved in innate immune pathway or sequester host nuclear transport receptors so that cellular transport required for normal host innate immune response is affected.}

  • David Jans: So if I can also add a little bit. I think the simplest model at the moment would be that clearly the C-terminus plays a big role in localization, but also I think the conventional α/βNLS in the folded part does as well. All the evidence would suggest that both are important.

  • Félix Rey: So you think that the folded NLS of NS5 is exposed?

  • David Jans: I think that is quite possible and if you have the situation between dimers and monomers of NS5, a lot of things can happen. Don’t forget, and this is something that even I hardly mention in talks, that there is also an export signal present in DENV NS5. And if you inhibit nuclear export, NS5 level is increased in the nucleus by a lot. So we think that this is true for all of the DENV serotypes – even DENV1 NS5. Clearly NS5 is cycling all the time in a cell. And if you inhibit one or the other you can change where it goes. So it’s dyamic. And so i think probably we should be thinking that the dynamics may be the key thing anyway for what it does in the nucleus or in the cytosol for that matter.

  • Ok the reverse genetics experiments are quite crystalline and the P884T has some in the cytoplasm and the virus still grow and so on. But I just want to raise a potential caveat to something that we hadn’t thought about – the dynamics of the nuclear import/export process. So the reverse genetics is done in DENV2?

  • Subhash Vasudevan: Yes.

  • David Jans: So not in DENV1 or DENV3. The crystal structures of full-length NS5 were from DENV3, right?

  • Subhash Vasudevan: But DENV2 NS5 is the one that is in the nucleus and so is DENV3 NS5.

  • David Jans: We also have to admit that we’re limited by the crystal structures. So that’s DENV3 we have the full-length NS5 structure of. We have the reverse genetic side of DENV2. And maybe we should do some reverse genetics in DENV1? I think that the 884 mutation to convert threonine into proline would be quite interesting to do. Also what we want really is the crystal structure of the full-length NS5 bound to importin-α. If we had the full-length, we’d all be happy and Félix would know what’s going on.

  • Subhash Vasudevan: Agree that the mutation should be done in DENV1 infectious clone and also in DENV4.

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tay, M.Y.F., Vasudevan, S.G. (2018). The Transactions of NS3 and NS5 in Flaviviral RNA Replication. In: Hilgenfeld, R., Vasudevan, S. (eds) Dengue and Zika: Control and Antiviral Treatment Strategies. Advances in Experimental Medicine and Biology, vol 1062. Springer, Singapore. https://doi.org/10.1007/978-981-10-8727-1_11

Download citation

Publish with us

Policies and ethics