Introduction and Literature Review

Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

In this chapter a comprehensive literature review on fractional-slot concentrated-wound (FSCW) permanent magnet synchronous machines (PMSMs) and the existing techniques for their electromagnetic characterisation is provided. A discussion is made on the drawbacks and shortcoming of the existing methods, based on which the scope of the research reported in this thesis, its objectives and its contributions are outlined.

References

  1. 1.
    J. Cros, P. Viarouge, Synthesis of high performance PM motors with concentrated windings. IEEE Trans. Energy Convers. 17, 248–253 (2002)CrossRefGoogle Scholar
  2. 2.
    F. Magnussen, C. Sadarangani, Winding factors and Joule losses of permanent magnet machines with concentrated windings, in IEEE International Electric Machines and Drives Conference, 2003, IEMDC’03, vol. 1 (2003), pp. 333–339Google Scholar
  3. 3.
    N. Bianchi, S. Bolognani, M.D. Pre, G. Grezzani, Design considerations for fractional-slot winding configurations of synchronous machines. IEEE Trans. Ind. Appl. 42, 997–1006 (2006)CrossRefGoogle Scholar
  4. 4.
    I. Morita, T. Kanayama, T. Ueta, Load characteristics comparisons of interior permanent magnet synchronous motors by pole-slot combinations, in International Conference on Electrical Machines and Systems, 2009, ICEMS 2009 (2009), pp. 1–6Google Scholar
  5. 5.
    L. Chong, Design of an interior permanent magnet machine with concentrated windings for field weakening applications. Ph.D., Electrical Engineering, The University of New South Wales, 2011Google Scholar
  6. 6.
    J.W. Bennett, G.J. Atkinson, B.C. Mecrow, D.J. Atkinson, Fault-tolerant design considerations and control strategies for aerospace drives. IEEE Trans. Ind. Electron. 59, 2049–2058 (2012)CrossRefGoogle Scholar
  7. 7.
    A.M. El-Refaie, Z.Q. Zhu, T.M. Jahns, D. Howe, Winding inductances of fractional slot surface-mounted permanent magnet brushless machines, in Industry Applications Society Annual Meeting, 2008, IAS ‘08 (IEEE, 2008), pp. 1–8Google Scholar
  8. 8.
    D. Ishak, Z.Q. Zhu, D. Howe, Comparison of PM brushless motors, having either all teeth or alternate teeth wound. IEEE Trans. Energy Convers. 21, 95–103 (2006)CrossRefGoogle Scholar
  9. 9.
    K. Ahsanullah, R. Dutta, M.F. Rahman, Design of a 4 KW interior permanent magnet machine suitable for low speed application, in 2013 International Conference on Electrical Machines and Systems (ICEMS) (2013), pp. 986–991Google Scholar
  10. 10.
    W. Daohan, W. Xiuhe, J. Sang-Yong, Cogging torque minimization and torque ripple suppression in surface-mounted permanent magnet synchronous machines using different magnet widths. IEEE Trans. Magn. 49, 2295–2298 (2013)CrossRefGoogle Scholar
  11. 11.
    H. Seok-Hee, T.M. Jahns, W.L. Soong, M.K. Guven, M.S. Illindala, Torque ripple reduction in interior permanent magnet synchronous machines using stators with odd number of slots per pole pair. IEEE Trans. Energy Convers. 25, 118–127 (2010)CrossRefGoogle Scholar
  12. 12.
    U.-J. Seo, Y.-D. Chun, J.-H. Choi, S.-U. Chung, P.-W. Han, D.-H. Koo, General characteristic of fractional slot double layer concentrated winding synchronous machine. J. Electr. Eng. Technol. 8, 282–287 (2013)CrossRefGoogle Scholar
  13. 13.
    D. Wu, Z.Q. Zhu, Influence of slot and pole number combinations on voltage distortion in surface-mounted permanent magnet machines with local magnetic saturation. IEEE Trans. Energy Convers. 30, 1460–1471 (2015)CrossRefGoogle Scholar
  14. 14.
    Z.Q. Zhu, L.J. Wu, M.L.M. Jamil, Influence of pole and slot number combinations on cogging torque in permanent-magnet machines with static and rotating eccentricities. IEEE Trans. Ind. Appl. 50, 3265–3277 (2014)CrossRefGoogle Scholar
  15. 15.
    Z.Q. Zhu, M.L.M. Jamil, L.J. Wu, Influence of slot and pole number combinations on unbalanced magnetic force in PM machines with diametrically asymmetric windings. IEEE Trans. Ind. Appl. 49, 19–30 (2013)CrossRefGoogle Scholar
  16. 16.
    P. Ponomarev, P. Lindh, J. Pyrhönen, Effect of slot-and-pole combination on the leakage inductance and the performance of tooth-coil permanent-magnet synchronous machines. IEEE Trans. Ind. Electron. 60, 4310–4317 (2013)Google Scholar
  17. 17.
    K. Yamazaki, M. Shina, Y. Kanou, M. Miwa, J. Hagiwara, Effect of eddy current loss reduction by segmentation of magnets in synchronous motors: difference between interior and surface types. IEEE Trans. Magn. 45, 4756–4759 (2009)CrossRefGoogle Scholar
  18. 18.
    Z.Q. Zhu, Y.S. Chen, D. Howe, Iron loss in permanent-magnet brushless AC machines under maximum torque per ampere and flux weakening control. IEEE Trans. Magn. 38, 3285–3287 (2002)CrossRefGoogle Scholar
  19. 19.
    P.B. Reddy, A.M. El-Refaie, H. Kum-Kang, J.K. Tangudu, T.M. Jahns, Comparison of interior and surface PM machines equipped with fractional-slot concentrated windings for hybrid traction applications. IEEE Trans. Energy Convers. 27, 593–602 (2012)CrossRefGoogle Scholar
  20. 20.
    S. Morimoto, Y. Takeda, T. Hirasa, Current phase control methods for permanent magnet synchronous motors. IEEE Trans. Power Electron. 5, 133–139 (1990)CrossRefGoogle Scholar
  21. 21.
    Y. Li, K. J. Bradley, P. Sewell, D. Gerada, Cascaded doubly fed induction machine system modelling based on Dynamic Reluctance Mesh modelling method, in Proceedings of the ICEM (2008), pp. 1–5Google Scholar
  22. 22.
    J.K. Tangudu, T.M. Jahns, A. El-Refaie, Z.Q. Zhu, Lumped parameter magnetic circuit model for fractional-slot concentrated-winding interior permanent magnet machines, in Proceedings of the ECCE (2009), pp. 2423–2430Google Scholar
  23. 23.
    E.C. Lovelace, T.M. Jahns, J.H. Lang, A saturating lumped-parameter model for an interior PM synchronous machine. IEEE Trans. Ind. Appl. 38, 645–650 (2002)CrossRefGoogle Scholar
  24. 24.
    P. Ponomarev, I. Petrov, J. Pyrhonen, Influence of travelling current linkage harmonics on inductance variation, torque ripple and sensorless capability of tooth-coil permanent-magnet synchronous machines. IEEE Trans. Magn. 50, 1–8 (2014)CrossRefGoogle Scholar
  25. 25.
    G. Dajaku, X. Wei, D. Gerling, Reduction of low space harmonics for the fractional slot concentrated windings using a novel stator design. IEEE Trans. Magn. 50, 1–12 (2014)CrossRefGoogle Scholar
  26. 26.
    J. Nerg, M. Rilla, V. Ruuskanen, J. Pyrhonen, S. Ruotsalainen, Direct-driven interior magnet permanent-magnet synchronous motors for a full electric sports car. IEEE Trans. Ind. Electron. 61, 4286–4294 (2014)CrossRefGoogle Scholar
  27. 27.
    R. Dutta, M.F. Rahman, L. Chong, Winding inductances of an interior permanent magnet (IPM) machine with fractional slot concentrated winding. IEEE Trans. Magn. 48, 4842–4849 (2012)CrossRefGoogle Scholar
  28. 28.
    A.B. Proca, A. Keyhani, A. El-Antably, L. Wenzhe, D. Min, Analytical model for permanent magnet motors with surface mounted magnets. IEEE Trans. Energy Convers. 18, 386–391 (2003)CrossRefGoogle Scholar
  29. 29.
    A. Rahideh, M. Mardaneh, T. Korakianitis, Analytical 2-D calculations of torque, inductance, and back-EMF for brushless slot less machines with surface inset magnets. IEEE Trans. Magn. 49, 4873–4884 (2013)CrossRefGoogle Scholar
  30. 30.
    A. Rahideh, T. Korakianitis, Analytical magnetic field calculation of slotted brushless permanent-magnet machines with surface inset magnets. IEEE Trans. Magn. 48, 2633–2649 (2012)CrossRefGoogle Scholar
  31. 31.
    B. Gaussens, E. Hoang, O.D.l. Barriere, J. Saint-Michel, P. Manfe, M. Lecrivain, et al., Analytical armature reaction field prediction in field-excited flux-switching machines using an exact relative permeance function. IEEE Trans. Magn. 49, 628–641 (2013)Google Scholar
  32. 32.
    D. Zarko, D. Ban, T.A. Lipo, Analytical calculation of magnetic field distribution in the slotted air gap of a surface permanent-magnet motor using complex relative air-gap permeance. IEEE Trans. Magn. 42, 1828–1837 (2006)CrossRefGoogle Scholar
  33. 33.
    L. Qi, F. Tao, W. Xuhui, Armature-reaction magnetic field analysis for interior permanent magnet motor based on winding function theory. IEEE Trans. Magn. 49, 1193–1201 (2013)CrossRefGoogle Scholar
  34. 34.
    C. Hong, L. Dawei, Q. Ronghai, Z. Zhe, L. Jian, An improved analytical model for inductance calculation of interior permanent magnet machines. IEEE Trans. Magn. 50, 1–8 (2014)Google Scholar
  35. 35.
    J.C. Moreira, T.A. Lipo, Modeling of saturated AC machines including air gap flux harmonic components. IEEE Trans. Ind. Appl. 28, 343–349 (1992)CrossRefGoogle Scholar
  36. 36.
    J. Faiz, I. Tabatabaei, Extension of winding function theory for nonuniform air gap in electric machinery. IEEE Trans. Magn. 38, 3654–3657 (2002)CrossRefGoogle Scholar
  37. 37.
    M. Chunting, M. Filippa, L. Weiguo, M. Ruiqing, Analytical method for predicting the air-gap flux of interior-type permanent-magnet machines. IEEE Trans. Magn. 40, 50–58 (2004)CrossRefGoogle Scholar
  38. 38.
    G. Dajaku, D. Gerling, Stator slotting effect on the magnetic field distribution of salient pole synchronous permanent-magnet machines. IEEE Trans. Magn. 46, 3676–3683 (2010)CrossRefGoogle Scholar
  39. 39.
    Z. Li, S.Z. Jiang, Z.Q. Zhu, C.C. Chan, Analytical modeling of open-circuit air-gap field distributions in multisegment and multilayer interior permanent-magnet machines. IEEE Trans. Magn. 45, 3121–3130 (2009)CrossRefGoogle Scholar
  40. 40.
    T. Wen-Bin, C. Ting-Yu, Analysis of flux leakage in a brushless permanent-magnet motor with embedded magnets. IEEE Trans. Magn. 35, 543–547 (1999)CrossRefGoogle Scholar
  41. 41.
    H. Chang-Chou, Y.H. Cho, Effects of leakage flux on magnetic fields of interior permanent magnet synchronous motors. IEEE Trans. Magn. 37, 3021–3024 (2001)CrossRefGoogle Scholar
  42. 42.
    B.N. Cassimere, S.D. Sudhoff, D.H. Sudhoff, Analytical design model for surface-mounted permanent-magnet synchronous machines. IEEE Trans. Energy Convers. 24, 347–357 (2009)CrossRefGoogle Scholar
  43. 43.
    X. Hung Vu, D. Lahaye, H. Polinder, J.A. Ferreira, Influence of stator slotting on the performance of permanent-magnet machines with concentrated windings. IEEE Trans. Magn. 49, 929–938 (2013)CrossRefGoogle Scholar
  44. 44.
    W.B. Hird, The reluctance of the teeth in a slotted armature. J. Inst. Electr. Eng. 29, 933–941 (1900)Google Scholar
  45. 45.
    P. Ponomarev, P. Lindh, J. Pyrhonen, Effect of slot-and-pole combination on the leakage inductance and the performance of tooth-coil permanent-magnet synchronous machines. IEEE Trans. Ind. Electron. 60, 4310–4317 (2013)CrossRefGoogle Scholar
  46. 46.
    N. Bianchi, E. Fornasiero, Impact of MMF space harmonic on rotor losses in fractional-slot permanent-magnet machines. IEEE Trans. Energy Convers. 24, 323–328 (2009)CrossRefGoogle Scholar
  47. 47.
    A.M. El-Refaie, Fractional-slot concentrated-windings synchronous permanent magnet machines: opportunities and challenges. IEEE Trans. Ind. Electron. 57, 107–121 (2010)CrossRefGoogle Scholar
  48. 48.
    L. Jian, C. Da-Woon, S. Dong-Hyeok, C. Yun-Hyun, Effects of MMF harmonics on rotor eddy-current losses for inner-rotor fractional slot axial flux permanent magnet synchronous machines. IEEE Trans. Magn. 48, 839–842 (2012)CrossRefGoogle Scholar
  49. 49.
    T.J.E. Miller, R. Rabinovici, Back-EMF waveforms and core losses in brushless DC motors. IEE Proc. Electr. Power Appl. 141, 144–154 (1994)CrossRefGoogle Scholar
  50. 50.
    Z.Q. Zhu, D. Howe, Instantaneous magnetic field distribution in permanent magnet brushless DC motors. IV. Magnetic field on load. IEEE Trans. Magn. 29, 152–158 (1993)CrossRefGoogle Scholar
  51. 51.
    A.O. Di Tommaso, F. Genduso, R. Miceli, A software for the evaluation of winding factor harmonic distribution in high efficiency electrical motors and generators, in Proceedings of the EVER (2013), pp. 1–6Google Scholar
  52. 52.
    R.F. Burbidge, A rapid method of analysing the m.m.f. wave of a single or polyphase winding. IEE Proc. Part C: Monogr. 105, 307–311 (1958)Google Scholar
  53. 53.
    P.C. Krause, O. Wasynczuk, S.D. Sudhoff, S. Pekarek, Analysis of Electric Machinery and Drive Systems, vol. 75 (Wiley, 2013)Google Scholar
  54. 54.
    C.-C. Lai, T.-S. Liu, M.-T. Peng, Design and analysis of permanent magnet motor with movable stators. Prog. Electromagn. Res. B 58, 219–232 (2014)CrossRefGoogle Scholar
  55. 55.
    X. Chen, J. Wang, V.I. Patel, A generic approach to reduction of magnetomotive force harmonics in permanent-magnet machines with concentrated multiple three-phase windings. IEEE Trans. Magn. 50, 1–4 (2014)Google Scholar
  56. 56.
    A. Bellara, Y. Amara, G. Barakat, B. Dakyo, Two-dimensional exact analytical solution of armature reaction field in slotted surface mounted PM radial flux synchronous machines. IEEE Trans. Magn. 45, 4534–4538 (2009)CrossRefGoogle Scholar
  57. 57.
    T. Lubin, S. Mezani, A. Rezzoug, 2-D exact analytical model for surface-mounted permanent-magnet motors with semi-closed slots. IEEE Trans. Magn. 47, 479–492 (2011)CrossRefGoogle Scholar
  58. 58.
    T. Lubin, S. Mezani, A. Rezzoug, Two-dimensional analytical calculation of magnetic field and electromagnetic torque for surface-inset permanent-magnet motors. IEEE Trans. Magn. 48, 2080–2091 (2012)CrossRefGoogle Scholar
  59. 59.
    M. Rahman, T. Little, G. Slemon, Analytical models for interior-type permanent magnet synchronous motors. IEEE Trans. Magn. 21, 1741–1743 (1985)CrossRefGoogle Scholar
  60. 60.
    H. Chang-Chou, Y.H. Cho, Effects of leakage flux on magnetic fields of interior permanent magnet synchronous motors. IEEE Trans. Magn. 37, 3021–3024 (2001)CrossRefGoogle Scholar
  61. 61.
    T. Wen-Bin, C. Ting-Yu, Analysis of flux leakage in a brushless permanent-magnet motor with embedded magnets. IEEE Trans. Magn. 35, 543–547 (1999)CrossRefGoogle Scholar
  62. 62.
    E.C. Lovelace, T.M. Jahns, J.H. Lang, A saturating lumped-parameter model for an interior PM synchronous machine. IEEE Trans. Ind. Appl. 38, 645–650 (2002)CrossRefGoogle Scholar
  63. 63.
    S.H. Han, T.M. Jahns, W.L. Soong, A magnetic circuit model for an IPM synchronous machine incorporating moving airgap and cross-coupled saturation effects, in 2007 IEEE International Electric Machines & Drives Conference (2007), pp. 21–26Google Scholar
  64. 64.
    Y. Kano, T. Kosaka, N. Matsui, Simple nonlinear magnetic analysis for permanent-magnet motors. IEEE Trans. Ind. Appl. 41, 1205–1214 (2005)CrossRefGoogle Scholar
  65. 65.
    M. Moallem, G.E. Dawson, An improved magnetic equivalent circuit method for predicting the characteristics of highly saturated electromagnetic devices. IEEE Trans. Magn. 34, 3632–3635 (1998)CrossRefGoogle Scholar
  66. 66.
    C. Ming, K.T. Chau, C.C. Chan, E. Zhou, X. Huang, Nonlinear varying-network magnetic circuit analysis for doubly salient permanent-magnet motors. IEEE Trans. Magn. 36, 339–348 (2000)CrossRefGoogle Scholar
  67. 67.
    J. Farooq, S. Srairi, A. Djerdir, A. Miraoui, Use of permeance network method in the demagnetization phenomenon modeling in a permanent magnet motor. IEEE Trans. Magn. 42, 1295–1298 (2006)CrossRefGoogle Scholar
  68. 68.
    C. Shi-Uk, K. Ji-Won, C. Yon-Do, W. Byung-Chul, H. Do-Kwan, Fractional slot concentrated winding PMSM with consequent pole rotor for a low-speed direct drive: reduction of rare earth permanent magnet. IEEE Trans. Energy Convers. 30, 103–109 (2015)CrossRefGoogle Scholar
  69. 69.
    D. Pavlik, V.K. Garg, J.R. Repp, J. Weiss, A finite element technique for calculating the magnet sizes and inductances of permanent magnet machines. IEEE Trans. Energy Convers. 3, 116–122 (1988)CrossRefGoogle Scholar
  70. 70.
    T.W. Nehl, F.A. Fouad, N.A. Demerdash, Determination of saturated values of rotating machinery incremental and apparent inductances by an energy perturbation method. IEEE Power Eng. Rev. PER-2, 28–29 (1982)Google Scholar
  71. 71.
    R. Escarela-Perez, E. Campero-Littlewood, M.A. Arjona-Lopez, A. Laureano-Cruces, Comparison of two techniques for two-dimensional finite-element inductance computation of electrical machines. IEE Proc. Electr. Power Appl. 152, 855–861 (2005)CrossRefGoogle Scholar
  72. 72.
    N. Bianchi, S. Bolognani, Magnetic models of saturated interior permanent magnet motors based on finite element analysis, in Conference Record on 33rd IAS Annual Meeting (1998), pp. 27–34Google Scholar
  73. 73.
    S. Kallio, J. Karttunen, P. Peltoniemi, P. Silventoinen, O. Pyrhonen et al., Determination of the inductance parameters for the decoupled d-q model of double-star permanent magnet synchronous machines. IET Electr. Power Appl. 8, 39–49 (2014)Google Scholar
  74. 74.
    K.J. Meessen, P. Thelin, J. Soulard, E.A. Lomonova, Inductance calculations of permanent-magnet synchronous machines including flux change and self- and cross-saturations. IEEE Trans. Magn. 44, 2324–2331 (2008)CrossRefGoogle Scholar
  75. 75.
    M. Farshadnia, R. Dutta, J.E. Fletcher, K. Ahsanullah, M.F. Rahman, H.C. Lovatt, Analysis of MMF and back-EMF waveforms for fractional-slot concentrated-wound permanent magnet machines, in IEEE Proceedings of the ICEM (2014), pp. 1976–1982Google Scholar
  76. 76.
    B.H. Ng, M.F. Rahman, T.S. Low, K.W. Lim, An investigation into the effects of machine parameters on torque pulsations in a brushless Dc drive, in Proceedings of the IECON (1988), pp. 749–754Google Scholar
  77. 77.
    T.S. Low, K.J. Tseng, T.H. Lee, K.W. Lim, K.S. Lock, Strategy for the instantaneous torque control of permanent-magnet brushless DC drives. Proc. IEE Elect. Power Appl. 137, 355–363 (1990)CrossRefGoogle Scholar
  78. 78.
    H.R. Bolton, R.A. Ashen, Influence of motor design and feed-current waveform on torque ripple in brushless DC drives. Proc. Elect. Power Appl. 131, 82–90 (1984)CrossRefGoogle Scholar
  79. 79.
    K.Y. Cho, J.D. Bae, S.K. Chung, M.J. Youn, Torque harmonics minimization in PM synchronous motor with back EMF estimation, in Proceedings of the TENCON, vol. 5 (1993), pp. 589–593Google Scholar
  80. 80.
    A. Gebregergis, M.H. Chowdhury, M.S. Islam, T. Sebastian, Modeling of permanent-magnet synchronous machine including torque ripple effects. IEEE Trans. Ind. Appl. 51, 232–239 (2015)CrossRefGoogle Scholar
  81. 81.
    A. Chiba, F. Nakamura, T. Fukao, M. Azizur Rahman, Inductances of cageless reluctance-synchronous machines having nonsinusoidal space distributions. IEEE Trans. Ind. Appl. 27, 44–51 (1991)Google Scholar
  82. 82.
    F. Meier, J. Soulard, dq theory applied to a permanent magnet synchronous machine with concentrated windings, in Proceedings of the PEMD (2008), pp. 194–198Google Scholar
  83. 83.
    F. Magnussen, H. Lendenmann, Parasitic effects in PM machines with concentrated windings. IEEE Trans. Ind. Appl. 43, 1223–1232 (2007)CrossRefGoogle Scholar
  84. 84.
    M. Fasil, C. Antaloae, N. Mijatovic, B.B. Jensen, J. Holboll, Improved dq-axes model of PMSM considering airgap flux harmonics and saturation. IEEE Trans. Appl. Supercond. 26, 1–5 (2016)Google Scholar
  85. 85.
    J. Liu, W. Chen, Generalized DQ model of the permanent magnet synchronous motor based on extended park transformation, in 2013 1st International Future Energy Electronics Conference (IFEEC) (2013), pp. 885–890Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.School of Electrical Engineering and TelecommunicationsThe University of New South WalesSydneyAustralia

Personalised recommendations