Skip to main content

Adjusting Brain Activity with Body Ownership Transfer

  • Chapter
  • First Online:

Abstract

Feedback design is an important issue in motor imagery brain–computer interface (BCI) systems. However, extant research has not reported on the manner in which feedback presentation optimizes coadaptation between a human brain and motor imagery BCI systems. This study assesses the effect of realistic visual feedback on user BCI-performance and motor imagery skills. A previous study developed a teleoperation system for a pair of humanlike robotic hands and showed that the BCI control of the hands in conjunction with first-person perspective visual feedback of movements arouses a sense of embodiment in the operators. In the first stage of this study, the results indicated that the intensity of the ownership illusion was associated with feedback presentation and subject performance during BCI motion control. The second stage investigated the effect of positive and negative feedback bias on BCI-performance of subjects and motor imagery skills. The subject-specific classifier that was set up at the beginning of the experiment did not detect any significant changes in the online performance of subjects, and the evaluation of brain activity patterns revealed that the subject’s self-regulation of motor imagery features improved due to a positive feedback bias and the potential occurrence of ownership illusion. The findings suggest that the manipulation of feedback can generally play an important role with respect to training protocols for BCIs in the optimization of the subject’s motor imagery skills.

This chapter is a modified version of a previously published paper [2], edited to be comprehensive and fit with the context of this book.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Alimardani, M., S. Nishio, and H. Ishiguro. 2013. Humanlike robot hands controlled by brain activity arouse illusion of ownership in operators. Science Reports 3. https://doi.org/10.1038/srep02396.

  2. Alimardani, M., S. Nishio, and H. Ishiguro. 2014. Effect of biased feedback on motor imagery learning in BCI-teleoperation system. Frontiers in Systems Neuroscience 8: 52.

    Google Scholar 

  3. Armel, K.C., and V.S. Ramachandran. 2003. Projecting sensations to external objects: Evidence from skin conductance response. Proceedings of the Royal Society of London: Biological 270: 1499–1506.

    Article  Google Scholar 

  4. Barbero, Á., and M. Grosse-Wentrup. 2010. Biased feedback in brain-computer interfaces. Journal of Neuroengineering and Rehabilitation 7 (34): 1–4.

    Google Scholar 

  5. Curran, E.A., and M.J. Stokes. 2003. Learning to control brain activity: A review of the production and control of EEG components for driving brain–computer interface (BCI) systems. Brain and Cognition 51 (3): 326–336.

    Article  Google Scholar 

  6. Gonzalez-Franco, M., Y. Peng, Z. Dan, H. Bo, and G. Shangkai. 2011. Motor imagery based brain-computer interface: A study of the effect of positive and negative feedback. In Engineering in medicine and biology society, EMBC, Annual international conference of the IEEE.

    Google Scholar 

  7. Guger, C., H. Ramoser, and G. Pfurtscheller. 2000. Real-time EEG analysis with subject-specific spatial patterns for a brain-computer interface (BCI). IEEE Transactions on Rehabilitation Engineering 8 (4): 447–456.

    Article  Google Scholar 

  8. Lotte, F., F. Larrue, and C. Muhl. 2013. Flaws in current human training protocols for spontaneous brain-computer interfaces: Lessons learned from instructional design. Frontiers in Human Neuroscience 7 (568). https://doi.org/10.3389/fnhum.2013.00568.

  9. Moore, D.S., and G.P. McCabe. 1998. Introduction to the practice of statistics, 3rd ed. New York: W. H. Freeman.

    MATH  Google Scholar 

  10. Müller-Gerking, J., G. Pfurtscheller, and H. Flyvbjerg. 1999. Designing optimal spatial filters for single-trial EEG classification in a movement task. Clinical Neurophysiology 110: 787–798.

    Article  Google Scholar 

  11. Neuper, C., R. Scherer, S. Wriessnegger, and G. Pfurtscheller. 2009. Motor imagery and action observation: Modulation of sensorimotor brain rhythms during mental control of a brain–computer interface. Clinical Neurophysiology 120 (2): 239–247.

    Article  Google Scholar 

  12. Nishio, S., T. Watanabe, K. Ogawa, and H. Ishiguro. 2012. Body ownership transfer to teleoperated android robot. In International conference on social robotics, ICSR 2012, 398–407.

    Chapter  Google Scholar 

  13. Pfurtscheller, G., and C. Neuper. 2001. Motor imagery and direct brain-computer communication. Proceedings of the IEEE 89 (7): 1123–1134.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by a Grant-in-Aid for Scientific Research (S), KAKENHI (24650114).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuichi Nishio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Alimardani, M., Nishio, S., Ishiguro, H. (2018). Adjusting Brain Activity with Body Ownership Transfer. In: Ishiguro, H., Dalla Libera, F. (eds) Geminoid Studies. Springer, Singapore. https://doi.org/10.1007/978-981-10-8702-8_23

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-8702-8_23

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-8701-1

  • Online ISBN: 978-981-10-8702-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics