Skip to main content

Quasi-3D Analytical Prediction for Open Circuit Magnetic Field of Axial Flux Permanent-Magnet Machine

  • Conference paper
  • First Online:
Fundamental Research in Electrical Engineering

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 480))

  • 1346 Accesses

Abstract

Precise simulation of magnetic field in the air gap is necessary to Predict of electromagnetic performance of permanent magnet machines. In this paper an analytical approach is proposed to calculate the magnetic field of slot-less Axial flux permanent magnet machine. Finite element method is the most precise method for magnetic calculation in the air gap although because of its low speed calculation is not appropriate for parametric and optimization studies. In this paper, an efficient analytical method is used to parametric studies on magnetic field in the air gap in case of no-load operation. By applying above mentioned method with high analytical speed, flux density in the middle of air gap is predicted and then induced voltage is calculated. Result of proposed analytical method is compared with 3-D FEM simulations that are reached from Ansys-Electronics software. These results are in the form of Quasi-3D.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gieras JF, Wang RJ, Kamper M (2004) Axial flux permanent magnet brushless machines, 2nd edn, Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  2. Aydin M, Huang S, Lipo TA (2004) Axial flux permanent magnet disc: machines a review. Proc Int Symp Power Electron Electric Drives Autom Motion SPEEDAM 2004:61–71

    Google Scholar 

  3. Kahourzade S, Gandomkar A (2014) A comprehensive review of axial-flux permanent-magnet machines. Can J Electric Comput Eng 37(1)

    Article  Google Scholar 

  4. Giulii Capponi F, De Donato G, Caricchi F (2012) Recent advances in axial-flux permanent magnet machines technology. IEEE Trans Ind Appl 48(6):2190–2205

    Article  Google Scholar 

  5. Fitzgerald AE, Kingsley JC, Umans SD (1992) Electric machinery, 5th edn, McGraw-Hill, New York

    Google Scholar 

  6. Zhu L, Jiang SZ, Zhu ZQ, Chan CC (2009) Analytical methods for minimizing cogging torque in permanent-magnet machines. IEEE Trans Magn 45(4):2023–2031

    Article  Google Scholar 

  7. Carmeli MS, Dezza FC, Mauri M (2006) Electromagnetic vibration and noise analysis of an external rotor permanent magnet motor. In: International symposium power electronics, electrical drives, automation and motion, pp 1028–1033

    Google Scholar 

  8. Bi C, Jiang Q, Lin S (2005) Unbalanced-magnetic-pull induced by the EM structure of PM spindle motor. In: Proceedings of eighth international conference on electrical machines and systems, pp 183–187

    Google Scholar 

  9. Boules N (1984) Two-dimensional field analysis of cylindrical machines with permanent magnet excitation. IEEE Trans Ind Appl IA-20(5):1267–1277

    Article  Google Scholar 

  10. Boules N (1985) Prediction of no-load flux density distribution in permanent magnet machines. IEEE Trans Ind Appl IA-21(3):633–643

    Article  Google Scholar 

  11. Zhu ZQ, Wu LJ, Xia ZP (2010) An accurate subdomain model for magnetic field computation in slotted surface-mounted permanent-magnet machines. IEEE Trans Magn 46(4):1100–1115

    Article  Google Scholar 

  12. Zhu ZQ, Howe D, Bolte E, Ackermann B (1993) Instantaneous magnetic field distribution in brushless permanent magnet dc motors. Part I: open-circuit field. IEEE Trans Magn 29(1):124–135

    Article  Google Scholar 

  13. Zhu ZQ, Howe D, Chan CC (2002) Improved analytical model for predicting the magnetic field distribution in brushless permanent-magnet machines. IEEE Trans Magn 38(1):229–238

    Article  Google Scholar 

  14. Zhu ZQ, Ng K, Schofield N, Howe D (2001) Analytical prediction of rotor eddy current loss in brushless machines equipped with surface-mounted permanent magnets. Part I: magnetostatic field model. In: Proceedings Fifth International Conference Electrical Machines and Systems, pp 806–809

    Google Scholar 

  15. Zhu ZQ, Xia ZP, Wu LJ, Jewell GW (2009) Analytical modelling and finite element computation of radial vibration force in fractional-slot permanent magnet brushless machines. In: International Electric Machines and Drives Conference, Miami, FL, pp 157–164

    Google Scholar 

  16. Wang J, Xia ZP, Howe D (2005) Three-phase modular permanent magnet brushless machine for torque boosting on a downsized ICE vehicle. IEEE Trans Veh Technol 54(3):809–816

    Article  Google Scholar 

  17. Kumar P, Bauer P (2008) Improved analytical model of a permanent-magnet brushless DC motor. IEEE Trans Magn 44(10):2299–2309

    Article  Google Scholar 

  18. Zhu ZQ, Howe D, Xia ZP (1994) Prediction of open-circuit airgap field distribution in brushless machines having an inset permanent magnet rotor topology. IEEE Trans Magn 30(1):98–107

    Article  Google Scholar 

  19. Markovic M, Jufer M, Perriard Y (2004) Reducing the cogging torque in brushless DC motors by using conformal mappings. IEEE Trans Magn 40(2):451–455

    Article  Google Scholar 

  20. Zarko D, Ban D, Lipo TA (2008) Analytical solution for cogging torque in surface permanent-magnet motors using conformal mapping. IEEE Trans Magn 44(1):52–65

    Article  Google Scholar 

  21. Parviainen A, Niemelä M, Pyrhönen J (2004) Modeling of axial flux permanent-magnet machines. IEEE Trans Ind Appl 40(5):1333–1340

    Article  Google Scholar 

  22. Jin P, Yuan1 Y, Minyi J, Shuhua F, Heyun L, Yang H, Ho SL (2014) 3-D analytical magnetic field analysis of axial flux permanent-magnet machine. IEEE Trans Magn 50(11)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Hossein Sharifi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sharifi, A.H., Seyedi, S.M., Mobarakeh, A.S. (2019). Quasi-3D Analytical Prediction for Open Circuit Magnetic Field of Axial Flux Permanent-Magnet Machine. In: Montaser Kouhsari, S. (eds) Fundamental Research in Electrical Engineering. Lecture Notes in Electrical Engineering, vol 480. Springer, Singapore. https://doi.org/10.1007/978-981-10-8672-4_40

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-8672-4_40

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-8671-7

  • Online ISBN: 978-981-10-8672-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics