Skip to main content

Room Temperature Acetone Sensing Based on ZnO Nanowire/Graphene Nanocomposite

  • Conference paper
  • First Online:
Fundamental Research in Electrical Engineering

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 480))

Abstract

In this paper we report the preparation of a hybrid material by combination of graphene and ZnO nanowire for acetone sensing applications. The ZnO thin films and ZnO NWs were prepared by sol-gel and hydrothermal methods, respectively. The morphological analyses of the obtained material have been performed by means of scanning electron microscopy. These sensors exhibited an enhanced response to acetone concentration as low as 100 ppm at room temperature. The gas sensing analysis of the hybrid material showed that the structure can be used for fabrication of practical sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen J, Pan X, Boussaid F, McKinley A, Fan Z, Bermak A (2017) Breath Level Acetone Discrimination Through Temperature Modulation of a Hierarchical ZnO Gas Sensor. Sens Lett IEEE, vol 1, pp 1–4, ISSN 2475–1472

    Article  Google Scholar 

  2. Righettoni M, Tricoli A, Pratsinis SE (2010) Si: WO3 Sensors for highly selective detection of acetone for easy diagnosis of diabetes by breath analysis. Anal Chem 82(9):3581–3587

    Article  Google Scholar 

  3. Joshi RK, Hu Q, Alvi F, Joshi N, Kumar A (2009) Au decorated zinc oxide nanowires for CO sensing. J Phys Chem C 113(36):16199–16202

    Article  Google Scholar 

  4. Tee S et al (2016) Microwave-assisted hydrolysis preparation of highly crystalline ZnO nanorod array for room temperature photoluminescence-based CO gas sensor. Sens Actuators B Chem 227:304–312

    Google Scholar 

  5. Galstyan V, Comini E, Baratto C, Faglia G, Sberveglieri G (2015) Nanostructured ZnO chemical gas sensors. Ceram Int 41(10):14239–14244

    Article  Google Scholar 

  6. Evans GP et al (2018) Room temperature vanadium dioxide-carbon nanotube gas sensors made via continuous hydrothermal flow synthesis. Sens Actuators B Chem 255:1119–1129

    Article  Google Scholar 

  7. Zhao Y et al (2018) Outstanding gas sensing performance of CuO-CNTs nanocomposite based on asymmetrical schottky junctions. Appl Surf Sci 428:415–421

    Article  Google Scholar 

  8. Song Z et al (2016) Sensitive room-temperature H2S gas sensors employing SnO2 quantum wire/reduced graphene oxide nanocomposites. Chem Mater 28:1205–1212

    Google Scholar 

  9. Zhang H, Feng J, Fei T, Liu S, Zhang T (2014) SnO2 nanoparticles-reduced graphene oxide nanocomposites for NO2 sensing at low operating temperature. Sens Actuators B 190:472–478

    Google Scholar 

  10. Zhang H, Cen Y, Du Y, Ruan S (2016) Enhanced acetone sensing characteristics of ZnO/Graphene composites. Sensors 16:1–10

    Article  Google Scholar 

  11. Mirabbaszadeh K, Mehrabian M (2012) Synthesis and properties of ZnO nanorods as ethanol gas sensors. Phys Scr 85:035701

    Article  Google Scholar 

  12. Tian S, Yang F, Zeng D, Xie C (2012) Solution-processed gas sensors based on ZnO nanorods array with an exposed (0001) facet for enhanced gas-sensing properties. J Phys Chem 116:10586–10591

    Article  Google Scholar 

  13. Rafiee Z, Mosahebfard A, Sheikhi MH (2017) Synthesis and preparation of ZnO NWs for glucose biosensing. In: Iranian conference on electrical engineering (ICEE), 2017, pp 455–460

    Google Scholar 

  14. Ge M, Xuan T, Yin G, Lu J, He D (2015) Chemical controllable synthesis of hierarchical assembled porous ZnO microspheres for acetone gas sensor. Sens Actuators B Chem 220:356–361

    Article  Google Scholar 

  15. Deng J, Wang L, Zhang R, Zhang T, Zhou T, Lou Z (2016) Fast and real-time acetone gas sensor using hybrid ZnFe2O4/ZnO hollow spheres. RSC Adv 6:66738–66744

    Google Scholar 

  16. Wongrat E, Chanlek N, Chueaiarrom C, Thupthimchun W (2017) Acetone gas sensors based on ZnO nanostructures decorated with Pt and Nb. Ceram Int 43(5):S557–S566

    Article  Google Scholar 

  17. Li S, Zhang L, Zhu M, Ji G, Zhao L, Yin J (2017) Acetone sensing of ZnO nanosheets synthesized using room-temperature precipitation. Sens Actuators B Chem 249:611–623

    Article  Google Scholar 

  18. Li XB et al (2013) Porous spheres-like ZnO nanostructure as sensitive gas sensors for acetone detection. Mater Lett 100:119–123

    Article  Google Scholar 

  19. Hu N, Yang Z, Wang Y, Zhang L, Wang Y, Huang X et al (2014) Ultrafast and sensitive room temperature NH3 gas sensors based on chemically reduced graphene oxide. Nanotechnology 25:025502

    Article  Google Scholar 

  20. Wang T et al (2017) Studies on NH3 gas sensing by zinc oxide nanowire-reduced graphene oxide nanocomposites. Sens Actuators B Chem 252:284–294

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maryam Tabibi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tabibi, M., Rafiee, Z., Sheikhi, M.H. (2019). Room Temperature Acetone Sensing Based on ZnO Nanowire/Graphene Nanocomposite. In: Montaser Kouhsari, S. (eds) Fundamental Research in Electrical Engineering. Lecture Notes in Electrical Engineering, vol 480. Springer, Singapore. https://doi.org/10.1007/978-981-10-8672-4_27

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-8672-4_27

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-8671-7

  • Online ISBN: 978-981-10-8672-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics