Skip to main content

An Overview of the Potential of Bioremediation for Contaminated Soil from Municipal Solid Waste Site

  • Chapter
  • First Online:
Book cover Emerging and Eco-Friendly Approaches for Waste Management

Abstract

The soil contamination due to open disposal of municipal solid waste has become a serious issue particularly in the developing countries. Several studies have revealed variable impacts of pollutant toxicity on the environment and exposed inhabitants. This chapter provides an overview of the application of bioremediation of sites contaminated owing to municipal solid waste. The application of bioremediation technologies and well-organized mechanisms for environmental safety measures of these methods were discussed. Because some pollutants can be seriously affect to the environment, the chapter furthermore suggests strategies for better remediation of site. In addition, more detail studies exploring the linkage between the fates, and environmentally important factors are necessary to better understand the parameters on using bioremediation technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Atagana HI, Haynes RJ, Wallis FM (2003) Optimization of soil physical and chemical conditions for the bioremediation of creosote-contaminated soil. Biodegradation 14:297–307

    Article  CAS  Google Scholar 

  • Bamforth SM, Singleton I (2005) Bioremediation of polycyclic aromatic hydrocarbons: current knowledge and future directions. J Chem Technol Biotechnol 80(7):723–736

    Article  CAS  Google Scholar 

  • Becerra-Castro C, Kidd PS, Prieto-Fernández Á, Nele W, Acea MJ, Jaco V (2011) Endophytic and rhizoplane bacteria associated with Cytisus striatus growing on hexachlorocy-clohexane-contaminated soil: isolation and characterisation. Plant Soil 340:413–433

    Article  CAS  Google Scholar 

  • Bharagava RN, Chowdhary P, Saxena G (2017) Bioremediation an eco-sustainable green technology, its applications and limitations. In: Bharagava RN (ed) Environmental pollutants and their bioremediation approaches. CRC, Taylor & Francis Group, USA, pp 1–22

    Chapter  Google Scholar 

  • Brito EM, De la Cruz BM, Caretta CA, Goni-Urriza M, Andrade LH, Cuevas-Rodríguez G, Malm O, Torres JP, Simon M, Guyoneaud R (2015) Impact of hydrocarbons, PCBs and heavy metals on bacterial communities in Lerma River, Salamanca, Mexico: investigation of hydrocarbon degradation potential. Sci Total Environ 521:1–10

    Article  CAS  Google Scholar 

  • Carro L, Barriada JL, Herrero R, Sastre de Vicente ME (2013) Surface modifications of Sargassum muticum algal biomass for mercury removal: a physicochemical study in batch and continuous flow conditions. Chem Eng J 229:378–387

    Article  CAS  Google Scholar 

  • Chakraborty R, Wu CH, Hazen TC (2012) Systems biology approach to bioremediation. Curr Opin Biotechnol 23:1–8

    Article  CAS  Google Scholar 

  • Chandra R, Chowdhary P (2015) Properties of bacterial laccases and their application in bioremediation of industrial wastes. Environ Sci: Processes Impacts 17:326–342

    CAS  Google Scholar 

  • Chen B, Liu X, Liu W, Wen J (2009) Application of clone library analysis and real-time PCR for comparison of microbial communities in a low-grade copper sulfide ore bioheap leachate. J Ind Microbiol Biotechnol 36:1409–1416

    Article  CAS  Google Scholar 

  • Chen XW, Wong James TF, Wai Ng CW, Wong MH (2016) Feasibility of biochar application on a landfill final cover – a review on balancing ecology and shallow slope stability. Environ Sci Pollut Res 23(8):7111–7125

    Article  CAS  Google Scholar 

  • Cointreau S (2006) Occupational and Environmental Health Issues of Solid Waste Management Urban Papers. The World Bank Group, Washington, DC. UP-2, JULY 2006. http://www.worldbank.org/urban/

  • Cui Z, Zhang X, Yang H, Sun L (2017) Bioremediation of heavy metal pollution utilizing composite microbial agent of Mucor circinelloides, Actinomucor sp. and Mortierella sp. J J Environ Chemical Eng 5:3616–3621

    Article  CAS  Google Scholar 

  • Dua M, Sethunathan N, Johri AK (2002) Biotechnology bioremediation success and limitations. Appl Microbiol Biotechnol 59(2–3):143–152

    CAS  Google Scholar 

  • Fulekar MH, Sharma J, Tendulkar A (2012) Bioremediation of heavy metals using biostimulation in laboratory bioreactor. Environ Monit Assess 184(12):7299–7307

    Article  CAS  Google Scholar 

  • Gautam SP, Bundela PS, Pandey AK, Jamaluddin Awasthi MK, Sarsaiya S (2012) Diversity of cellulolytic microbes and the biodegradation of municipal solid waste by a potential strain. Int J Microbiol 2012:325907., 12 pages. https://doi.org/10.1155/2012/325907

    Article  CAS  Google Scholar 

  • Ghosh A, Das P (2014) Optimization of copper adsorption by soil of polluted wasteland using response surface methodology. Indian Chem Eng 56:29–42

    Article  CAS  Google Scholar 

  • Ghosh A, Ghosh Dastidar M, Sreekrishnan TR (2015) Recent advances in bioremediation of heavy metals and metal complex dyes: review. J Environ Eng C4015003:1–14

    Google Scholar 

  • Ghosh A, Dastidar MG, Sreekrishnan TR (2016) Response surface optimization of bioremediation of acid black 52 (Cr complex dye) using Aspergillus tamarii. Environ Technol 38:1–12

    Google Scholar 

  • Guo H, Luo S, Chen L, Xiao X, Xi Q, Wei W, Zeng G, Liu C, Wan Y, Chen J, He Y (2010) Bioremediation of heavy metals by growing hyperaccumulator endophytic bacterium Bacillus sp. L14. Bioresour Technol 101(22):8599–8605

    Article  CAS  Google Scholar 

  • Hoornweg D, Bhada-Tata P (2012) What a waste: a global review of solid waste management. In: Urban development series. Urban Development and Local Government Unit. Sustainable Development Network. The World Bank. Washington, DC, 20433. USA. March, 2012, No.5. Website: www.worldbank.org/urban; https://siteresources.worldbank.org/INTURBANDEVELOPMENT/Resources/336387-1334852610766/What_a_Waste2012_Final.pdf

  • Iqbal J, Ahemad M (2015) Recent advances in bacteria-assisted phytoremediation of heavy metals from contaminated soil. In: Chandra R (ed) Advances in biodegradation and bioremediation of industrial waste. CRC, Boca Raton, pp 401–423

    Chapter  Google Scholar 

  • Jing Q, Zhang M, Liu X, Li Y, Wang Z, Wen J (2017) Bench-scale microbial remediation of the model acid mine drainage: effects of nutrients and microbes on the source bioremediation. Int Biodeterior Biodegrad 00(00):1–5. https://doi.org/10.1016/j.ibiod.2017.01.009

    Google Scholar 

  • Karigar CS, Rao SS (2011) Role of microbial enzymes in the bioremediation of pollutants: a review. Enzyme Res. Article ID 805187. https://doi.org/10.4061/2011/805187

  • Kavamura VN, Esposito E (2010) Biotechnological strategies applied to the decontamination of soils polluted with heavy metals. Biotechnol Adv 28:61–69

    Article  CAS  Google Scholar 

  • Kensa MV (2011) Bioremediation: an overview. J Ind Pollut Control 27(2):161–168

    CAS  Google Scholar 

  • Lee GF, Lee AJ (1994) Impact of municipal and industrial non-hazardous waste landfills on public health and the environment: an overview’. Prepared for California EPA Comparative Risk Project, Sacramento, May (1994). http://www.gfredlee.com/Landfills/cal_risk.pdf

  • Liang C, Das K, McClendon R (2003) The influence of temperature and moisture contents regimes on the aerobic microbial activity of a biosolids composting blend. Bioresour Technol 86:131–137

    Article  CAS  Google Scholar 

  • Liu SH, Zeng GM, Niu QY, Liu Y, Zhou L, Jiang LH, Tan XF, Xu P, Zhang C, Cheng M (2017) Bioremediation mechanisms of combined pollution of PAHs and heavy metals by bacteria and fungi: a mini review. Bioresource Technology 224:25–33

    Article  CAS  Google Scholar 

  • Ma XK, Ding N, Peterson EC, Daugulis AJ (2016) Heavy metals species affect fungal-bacterial synergism during the bioremediation of fluoranthene. Appl Microbiol Biotechnol 100:7741–7750

    Article  CAS  Google Scholar 

  • Mani D, Kumar C (2014) Biotechnological advances in bioremediation of heavy metals contaminated ecosystems: an overview with special reference to phytoremediation. Int J Environ Sci Technol 11:843–872

    Article  CAS  Google Scholar 

  • Meier J, Piva A, Fortin D (2012) Enrichment of sulfate-reducing bacteria and resulting mineral formation in media mimicking pore water metal ion concentrations and pH conditions of acidic pit lakes. FEMS Microbiol Ecol 79:69–84

    Article  CAS  Google Scholar 

  • Passatore L, Rossetti S, Juwarkar AA, Massacci A (2014) Phytoremediation and bioremediation of polychlorinated biphenyls (PCBs): state of knowledge and research perspectives. J Hazard Mater 278:189–202

    Article  CAS  Google Scholar 

  • Paul D, Pandey G, Pandey J, Jain RK (2005) Accessing microbial diversity for bioremediation and environmental restoration. Trends Biotechnol 23:135–142

    Article  CAS  Google Scholar 

  • Rayu S, Karpouzas DG, Singh BK (2012) Emerging technologies in bioremediation: constraints and opportunities. Biodegradation 23:917–926

    Article  CAS  Google Scholar 

  • Selin E (2013) Solid waste management and health effects – a qualitative study on awareness of risks and environmentally significant behavior in Mutomo, Kenya. http://www.diva-portal.org/smash/get/diva2:607360/FULLTEXT02

  • Stenuit B, Eyers L, Schuler L, Agathos SN, George I (2008) Emerging high-throughput approaches to analyse bioremediation of sites contaminated with hazardous and/or recalcitrant wastes. Biotechnol Adv 26:561–575

    Article  CAS  Google Scholar 

  • UNEP (2007) Environmental pollution and impacts on public health: implications of the Dandora Municipal Dumping Site in Nairobi

    Google Scholar 

  • Yadav A, Chowdhary P, Kaithwas G, Bharagava RN (2017) Toxic metals in environment, threats on ecosystem and bioremediation approaches. In: Das S, Dash HR (eds) Handbook of metal-microbe interactions and bioremediation. CRC, Taylor & Francis Group, USA, p 813. http://www.unep.org/urban_environment/pdfs/dandorawastedump-reportsummary.pdf 2012-11-20

    Google Scholar 

  • Zabbey N, Sam K, Onyebuchi AT (2017) Remediation of contaminated lands in the Niger Delta, Nigeria: prospects and challenges. Sci Total Environ 586:952–965

    Article  CAS  Google Scholar 

  • Zhang XX, Cheng SP, Zhu CJ, Sun SL (2006) Microbial PAH-degradation in soil: degradation pathways and contributing factors. Pedosphere 16:555–565

    Article  CAS  Google Scholar 

  • Zimmer D, Baum C, Leinweber P, Hrynkiewicz K, Meissner R (2009) Associated bacteria increase the phytoextraction of cadmium and zinc from a metal-contaminated soil by mycorrhizal willows. Int J Phytoremediation 11:200–213

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The first (corresponding) author is grateful to Dr. P.S. Bundela Regional Officer, Madhya Pradesh Pollution Control Board, (M.P.) India for valuable advice. The authors gratefully acknowledge the esteemed reviewers/editors for their critical assessment and valuable suggestions.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Awasthi, A.K., Li, J., Pandey, A.K., Khan, J. (2019). An Overview of the Potential of Bioremediation for Contaminated Soil from Municipal Solid Waste Site. In: Bharagava, R., Chowdhary, P. (eds) Emerging and Eco-Friendly Approaches for Waste Management . Springer, Singapore. https://doi.org/10.1007/978-981-10-8669-4_3

Download citation

Publish with us

Policies and ethics